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Abstract - Oral diseases are a global health issue affecting billions of people worldwide. Early detection using artificial 

intelligence technology, particularly Convolutional Neural Networks (CNN), can enhance the accuracy of oral disease 

diagnosis. This study compares the performance of three CNN architectures, namely ConvNeXt Tiny, MobileNetV3 Large, 

and EfficientNet B0, in classifying oral diseases based on a medical image dataset. The evaluation considers accuracy, 

computational efficiency, and processing time. The results show that EfficientNet B0 achieved the highest accuracy 

(98.21%) with fewer parameters than ConvNeXt Tiny. However, ConvNeXt Tiny demonstrated the best absolute accuracy 

(96.96%) despite higher computational resource consumption. MobileNetV3 Large exhibited high efficiency in parameter 

usage with competitive accuracy (96.44%). Thus, the choice of CNN architecture depends on the trade-off between high 

accuracy and computational efficiency in clinical implementation.  
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1. INTRODUCTION 

Oral diseases represent a global health concern, affecting more than 3.5 billion people worldwide as of 2019. 

These conditions include dental caries, periodontal disease, tooth loss, oral cavity cancer, dental trauma, noma, 

and congenital anomalies such as cleft palate and cleft lip [1][2]. According to the WHO's Global Oral Health 

Status Report: Towards Universal Health Coverage for Oral Health by 2030, oral diseases, especially dental 

caries and periodontal disease, are highly prevalent in low- and middle-income countries due to limited access 

to dental care services. These diseases significantly impact individual quality of life, causing difficulties in 

speaking and chewing, increasing the risk of infection, and potentially progressing to more severe conditions 

such as oral cancer. Furthermore, oral diseases share common risk factors with other non-communicable 

diseases, such as poor dietary habits, tobacco use, and alcohol consumption. This intersection emphasizes the 

need for integrated healthcare strategies to address oral and general health concurrently [2]. 

In recent years, the field of medical imaging has leveraged the rapid progress in machine learning to enhance 

healthcare delivery, resulting in substantial advancements in diagnostic capabilities. Ongoing improvements 

in deep learning architectures have markedly boosted both the accuracy of diagnoses and the efficiency of data 

processing [3][4][5]. These technological advancements are particularly relevant in the context of oral health, 

where the substantial burden of oral diseases and the restricted availability of dental services underscore the 

urgent need for advanced and accessible diagnostic solutions. 

The substantial burden of oral diseases and the restricted availability of dental services underscore the urgent 

need for advanced and accessible solutions. Traditional healthcare approaches often fall short in addressing 

these challenges effectively, particularly in under-resourced settings. In response, the rapid development of 

artificial intelligence (AI) and deep learning presents promising opportunities to transform medical 

diagnostics. These technologies enable efficient and accurate analysis of medical data, which in turn supports 

early detection, improves treatment planning, and enhances healthcare outcomes at scale [6]. In addition to 

accelerating the diagnostic process, AI-based systems can generate data-driven insights that improve clinical 
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decision-making and support personalized healthcare services, contributing to more targeted and effective 

treatments [7]. 

One of the most prominent advancements in AI-driven diagnostics is the application of deep learning 

techniques, particularly convolutional neural networks (CNNs). CNNs have become a cornerstone in medical 

image analysis due to their ability to automatically extract and learn relevant features from visual data, making 

them highly effective for pattern recognition and image classification tasks [8]. These models offer high 

accuracy and have been successfully deployed in various medical domains, including tumor detection, retinal 

image analysis, and skin lesion classification, demonstrating their adaptability and diagnostic value [9]. 

Despite the growing adoption of CNNs in medical applications, selecting an architecture that balances 

classification accuracy with computational efficiency remains a major challenge. This is especially crucial for 

real-time healthcare systems or mobile diagnostic tools, where computational resources may be limited. 

Therefore, this study aims to evaluate and compare the performance of three well-known CNN architectures, 

namely ConvNeXt, MobileNetV3, and EfficientNet, that are recognized for their efficiency in image 

classification tasks. Each of these architectures applies unique optimization strategies to reduce computational 

cost while preserving or improving classification performance. 

ConvNeXt incorporates modern techniques such as depth-wise convolution and enhanced layer normalization 

to refine the convolutional process and improve learning efficiency [10]. MobileNetV3 enhances performance 

through the use of inverted residual blocks and squeeze-and-excitation modules, offering a lightweight solution 

that maintains competitive accuracy [11]. EfficientNet, on the other hand, utilizes compound scaling to balance 

depth, width, and resolution in a way that maximizes model performance while minimizing resource 

consumption [12]. 

The dataset utilized in this study originates from the work of Piyarathne et al. [13], published in the article 

titled “A Comprehensive Dataset of Annotated Oral Cavity Images for Diagnosis of Oral Cancer and Oral 

Potentially Malignant Disorders.” This publicly available dataset, hosted on the Zenodo repository, comprises 

diverse and high-quality oral cavity images, thereby enabling the evaluated models to generalize well across 

various clinical scenarios. This research focuses on assessing the classification accuracy and computational 

efficiency of the ConvNeXt, MobileNetV3, and EfficientNet architectures in diagnosing oral diseases through 

image data. The goal is to identify the most effective and practical deep learning solution for real-world clinical 

applications, particularly in resource-constrained environments that demand both speed and reliability in the 

diagnostic process.  

2. RESEARCH METHODS 

This study adopts the OSEMN framework, introduced by Hilary Mason and Chris Wiggins in their article 

titled “A Taxonomy of Data Science,” as the guideline for the research workflow. The OSEMN framework 

comprises five sequential stages: Obtain (data collection), Scrub (data cleaning), Explore (data exploration), 

Model (modeling), and Interpret (result interpretation) [14]. These stages guide the end-to-end process of 

building and evaluating the machine learning pipeline. The workflow is visualized in Figure 1.  

 

Figure 1. OSEMN framework.  
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2.1. Obtain 

The dataset used in this study contains 3,000 oral cavity images divided into four categories: Healthy, Benign, 

Oral Potentially Malignant Disorders (OPMD), and Oral Cavity Cancer (OCA). This dataset was obtained 

from the research conducted by Piyarathne et al. [13]. Each image is labeled with its corresponding category, 

allowing for supervised learning. Figure 2 displays sample images from each class, while Figure 3 presents 

the class distribution, which is notably imbalanced. 

 

Figure 2. Sample images from each class. 

 

 

Figure 3. Class distribution in the dataset. 

2.2. Scrub 

2.2.1. Data Augmentation 

Data augmentation is a technique that utilizes various transformations to generate synthetic data from an 

existing dataset. This technique plays a crucial role in training deep neural networks (DNNs), as it allows the 

model to receive a wider range of data variations without the need to collect new data [15]. Moreover, data 

augmentation is part of regularization methods aimed at improving the model's generalization ability [16]. In 

the context of this study, data augmentation is used to address the imbalance in the number of images across 

categories and to reduce the risk of overfitting. This is due to the highly uneven distribution of the initial 

dataset, particularly in the OCA category, which contains significantly fewer samples compared to other 

categories. The augmentation process was conducted in two stages: 
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a. First Stage 

This stage focused on increasing the number of images in the OCA category from 129 to 500. The 

augmentation techniques used in this stage are presented in Table 1. 

Table 1. Augmentation techniques used in the first stage. 

No Augmentation Type Value 

1 Random Resized Crop 224, scale = (0.8, 1.0) 

2 Random Horizontal Flip  

3 Random Vertical Flip  

4 ToTensor  
 

b. Second Stage 

After increasing the OCA category to 500 images, the second stage aimed to equalize the number of images 

in all categories (Healthy, Benign, and OCA) to match the largest category, OPMD, which contained 1,394 

images. The augmentation techniques used in this stage are listed in Table 2. The results of augmentation 

and distribution balancing are summarized in Table 3. 

Table 2. Augmentation techniques used in the second stage. 

No Augmentation Type Value 

1 Random Resized Crop 224, scale = (0.8, 1.0) 

2 Random Horizontal Flip  

3 Random Vertical Flip  

4 Random Rotation 10 

5 Color Jitter brightness = 0.2, contrast = 0.2, saturation = 0.2, hue = 0.1 

6 Random Affine degrees =15, translate = (0.1, 0.1) 

7 ToTensor  

Table 3. Data distribution per category before and after augmentation. 

Class Original After Stage 1 After Stage 2 

Healthy 729 729 1394 

Benign 748 748 1394 

OPMD 1394 1394 1394 

OCA 129 500 1394 

Total 3000 3371 5576 

 

2.2.2. Dataset Splitting 

To prepare for training and evaluation, the augmented dataset was split into training, validation, and test 

subsets. The split was done randomly using the train_test_split function from the scikit-learn library to avoid 

overlapping samples. Three different scenarios were tested with varying proportions, as presented in Table 4. 

Table 4. Dataset splitting scenarios 

Scenario Train (%) Test (%) Validation (%) Train Test Val 

A 80 10 10 4460 560 556 

B 70 15 15 3900 840 836 

C 60 20 20 3344 1116 1116 

 

2.2.3. Data Normalization 

The final step in the scrubbing stage is normalization, which aims to standardize the pixel value distribution 

across all images. This process was carried out using the transforms. Normalize method, which adjusts pixel 

values based on the mean and standard deviation of the dataset. Normalization was applied to each color 
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channel (R, G, B), resulting in pixel values with a mean close to zero and a standard deviation close to one for 

every image. The normalization parameters used are listed in Table 5. 

Table 5. Data normalization parameters. 

Parameter Value 

Mean 0.485, 0.456, 0.406 

Standard Deviation 0.229, 0.224, 0.225 

2.3. Explore 

2.3.1. Data Distribution per Class 

 

Figure 4. Data distribution chart after the Scrub process. 

The class distribution was evaluated to ensure a balanced number of images across the following categories: 

Healthy, Benign, Oral Potentially Malignant Disorders (OPMD), and Oral Cancer (OCA). The results show 

that each of the four categories contains exactly 1,394 images, as illustrated in Figure 4. This balanced 

distribution is essential to avoid bias during training and to enhance the generalization capability of the model. 

A bar plot visualization reinforces this outcome, with all four bars appearing at equal height. 

2.3.2. Sample Image Visualization 

 

Figure 5. Sample images from each disease category after the Scrub stage. 

To understand the visual differences between classes, sample images from each category were visualized after 

the preprocessing phase, as shown in Figure 5. Each class displays distinct visual characteristics: Healthy 
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images show normal tissues, Benign images reveal mild abnormalities, OPMD images include lesions or 

discoloration, and OCA images exhibit severe tissue damage or ulcers. This visualization confirms the 

diversity and quality of the dataset post-augmentation. 

2.3.3. Model Architecture Exploration 

This study employs three CNN architectures: ConvNeXt, MobileNetV3, and EfficientNet, each with the 

following strengths: 

a. ConvNeXt: Integrates advantages of Vision Transformers (ViT) with traditional CNNs. It uses large 

kernel convolutions (7×7), LayerNorm, GELU, and AdamW to strike a balance between high 

performance and computational efficiency. 

b. MobileNetV3: Optimized for mobile devices through Neural Architecture Search (NAS), 

incorporating components such as inverted residual blocks, Squeeze-and-Excitation, and hard-swish 

activation. It is ideal for real-time applications and edge computing. 

c. EfficientNet: Implements Compound Scaling to proportionally balance network depth, width, and 

input resolution. This approach enhances accuracy without imposing excessive computational cost. 

These three models offer an ideal trade-off between accuracy and efficiency, making them suitable for a wide 

range of deep learning-based image recognition tasks. 

2.4. Model 

2.4.1. Model Training  

Model development was performed in Visual Studio Code using a virtual environment configured via 

Anaconda. GPU acceleration was enabled using CUDA on an NVIDIA RTX 3060. All three CNN models, 

namely ConvNeXt Tiny, MobileNetV3 Large, and EfficientNet B0, were trained using a transfer learning 

approach by initializing with ImageNet 1K pretrained weights. Two training strategies were applied: 

a. Without fine-tuning: Only the final layers were retrained, while the rest of the layers remained frozen. 

b. With fine-tuning: All layers of the model were retrained to better adapt to the characteristics of the 

dataset. 

Hyperparameters such as number of epochs, batch size, learning rate, and optimizer type were fine-tuned 

iteratively. Techniques such as EarlyStopping and ReduceLROnPlateau were employed to optimize the 

training process and prevent overfitting. 

2.4.2. Model Performance Evaluation 

After training, all models were evaluated using the test set to assess classification performance on previously 

unseen data. Evaluation metrics included final test accuracy, as well as visual analyses of the training and 

validation performance trends. Performance evaluation was conducted based on four training scenarios, 

combining the use of data augmentation and fine-tuning as follows: 

i. Without augmentation, without fine-tuning 

ii. Without augmentation, with fine-tuning 

iii. With augmentation, without fine-tuning 

iv. With augmentation, with fine-tune 

Tables 6, 7, and 8 present the accuracy results for the ConvNeXt Tiny, MobileNetV3 Large, and EfficientNet 

B0 architectures, respectively. 
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Table 6. Accuracy results of ConvNeXt Tiny architecture. 

Scenario No Aug, No FT No Aug, With FT With Aug, No FT With Aug, With FT 

A 57,807% 74,419% 78,036% 96,964% 

B 60,706% 70,640% 77,500% 96,905% 

C 57,072% 67,554% 76,434% 93,996% 

Table 7. Accuracy results of MobileNetV3 Large architecture. 

Scenario No Aug, No FT No Aug, With FT With Aug, No FT With Aug, With FT 

A 55,483% 65,449% 72,321% 96,439% 

B 58,278% 67,770% 73,210% 95,714% 

C 55,241% 63,727% 70,699% 93,548% 

Table 8. Accuracy results of EfficientNet B0 architecture. 

Scenario No Aug, No FT No Aug, With FT With Aug, No FT With Aug, With FT 

A 57,475% 65,449% 68,750% 98,214% 

B 56,733% 67,770% 68,690% 97,619% 

C 56,073% 63,727% 66,398% 93,548% 

 

The results in Table 6, 7, and 8 clearly indicate that, across all architectures, the highest accuracy was 

consistently achieved under the scenario that applied both data augmentation and fine-tuning, particularly 

under Scenario A. Conversely, the lowest accuracy was observed when neither augmentation nor fine-tuning 

was used. These notable differences underscore the crucial role of augmentation and fine-tuning in enhancing 

model performance. Data augmentation increases input image variability, thereby improving the model's 

generalization ability, while fine-tuning enables the model to better adapt to the specific characteristics of the 

dataset. 

3. RESULTS AND DISCUSSION 

This section represents the interpret stage of the research, where the results obtained from the model training 

and evaluation are analyzed and discussed in detail. The goal is to interpret the performance of each CNN 

architecture across different experimental scenarios, focusing on accuracy, training and testing efficiency, and 

computational resource usage. These insights serve as the basis for identifying the most suitable model for oral 

disease image classification. 

3.1. Accuracy Comparison of Each Architecture 

Model performance was evaluated by comparing the classification accuracy of three CNN architectures, 

namely ConvNeXt Tiny, MobileNetV3 Large, and EfficientNet B0, across four scenarios: without 

augmentation and before fine-tuning, without augmentation and after fine-tuning, with augmentation and 

before fine-tuning, and with augmentation and after fine-tuning. The evaluation results are presented in Table 

9. 

Table 9. Test accuracy comparison across architectures. 

Augmentation Fine-Tuning ConvNeXt Tiny MobileNetV3 Large EfficientNet B0 

No Before 57,807% 55,483% 57,475% 

No After 74,419% 55,483% 65,449% 

Yes Before 78,036% 72,321% 68,750% 

Yes After 96,964% 96,439% 98,214% 

 

The results demonstrate a significant improvement in accuracy when both data augmentation and fine-tuning 

are applied. EfficientNet B0 achieved the highest accuracy at 98.21%, followed by ConvNeXt Tiny (96.96%) 
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and MobileNetV3 Large (96.44%). Without augmentation or fine-tuning, all models showed relatively low 

accuracy, emphasizing the critical role of these techniques in enhancing model generalization. 

3.2. Training and Testing Time Efficiency Evaluation 

Computational efficiency is an important consideration when selecting models, particularly for real-time 

applications or deployment in resource-constrained environments. Tables 10 and 11 present the average 

training and testing times for each architecture under the four experimental scenarios.  

Table 10. Average training time per architecture (in seconds). 

Augmentation Fine-Tuning ConvNeXt Tiny MobileNetV3 Large EfficientNet B0 

No Before 24,45 18,18 20,26 

No After 30,97 21,98 25,53 

Yes Before 46,60 23,71 29,99 

Yes After 92,00 28,01 38,99 

Table 11. Testing time per architecture (in seconds). 

Augmentation Fine-Tuning ConvNeXt Tiny MobileNetV3 Large EfficientNet B0 

No Before 1,60 1,49 1,34 

No After 1,87 1,15 1,22 

Yes Before 3,02 2,68 2,32 

Yes After 3,20 2,92 2,33 

 

MobileNetV3 Large demonstrated the fastest training time under optimal conditions (with augmentation and 

fine-tuning), at 28.01 seconds. However, EfficientNet B0 recorded the shortest testing time, at 2.33 seconds, 

suggesting that despite its architectural complexity, it remains highly efficient during inference. These results 

highlight the trade-offs between training duration and inference efficiency across different CNN architectures, 

offering valuable insights for selecting an appropriate model based on specific deployment needs. 

3.3. Evaluation of Computational Resource Efficiency 

Further evaluation was conducted by comparing architectural complexity based on the number of parameters 

and FLOPs (Floating Point Operations). FLOPs indicate the number of floating-point operations required to 

execute a neural network during inference, serving as a key metric for assessing computational efficiency. A 

lower FLOPs value generally implies faster computation and reduced cost, enabling the deployment of models 

on less powerful hardware without compromising performance [17]. 

Table 12. Parameter count and FLOPs per architecture. 

Architecture 
Parameters  

(Million) 

FLOPs  

(Million) 

ConvNeXt Tiny 28,6 4.500 

MobileNetV3 Large 5,4 219 

EfficientNet B0 5,3 390 

Table 13. Accuracy vs. parameter count and FLOPs per architecture. 

Architecture 
Parameters  

(Million) 

FLOPs  

(Million) 

Accuracy Efficiency  

(% per million parameters) 

 

ConvNeXt Tiny 28,6 4.500 3,39  

MobileNetV3 Large 5,4 219 17,86  

EfficientNet B0 5,3 390 18,53  
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Table 12 presents the number of parameters and FLOPs for each model architecture. The parameter count 

indicates the model's capacity to learn complex features, while FLOPs reflect the computational load required 

during the inference process. ConvNeXt Tiny has the highest parameter count at 28.6 million and the highest 

FLOPs at 4,500 million, indicating that it is a high-complexity model with substantial computational demands. 

In comparison, MobileNetV3 Large and EfficientNet B0 are significantly lighter, each with approximately 5.4 

and 5.3 million parameters, and with much lower FLOPs values of 219 million and 390 million, respectively. 

These figures show that both MobileNetV3 Large and EfficientNet B0 are designed with computational 

efficiency in mind. 

Table 13 further illustrates the relationship between accuracy, parameter count, and computational load 

through the accuracy-to-parameter ratio. This ratio, expressed as percentage accuracy per million parameters, 

allows for a more precise assessment of a model's efficiency in converting its capacity into performance. 

EfficientNet B0 achieves the highest accuracy-to-parameter ratio of 18.53%, highlighting its superior balance 

between accuracy and resource utilization. MobileNetV3 Large follows closely with a ratio of 17.86%, 

indicating that it also performs efficiently, particularly in scenarios where hardware limitations must be 

considered. Although ConvNeXt Tiny demonstrates high classification accuracy, it does so at a significantly 

higher computational cost, reflected in its much lower efficiency ratio of 3.39%. 

These findings suggest that EfficientNet B0 is the most efficient architecture among the three, providing strong 

performance while maintaining relatively low computational demands. This makes it especially suitable for 

deployment in real-world environments with limited computational resources. In contrast, ConvNeXt Tiny, 

despite its robust accuracy, may be less practical in such scenarios due to its high complexity and resource 

requirements. 

3.4. Training and Testing Efficiency Relative to Model Complexity 

To evaluate training and testing efficiency in relation to model complexity, an analysis of time per parameter 

was conducted, as shown in Tables 14 and 15. 

Table 14. Training time vs. parameters and FLOPs. 

Architecture 
Max Training 

Time (s) 

Parameters 

(Million) 

FLOPs 

(Million) 

Efficiency (Time/Parameter, s 

per million) 

 

ConvNeXt Tiny 92,00 28,6 4.500 3,22  

MobileNetV3 Large 28,01 5,4 219 5,19  

EfficientNet B0 38,99 5,3 390 7,35  

Table 15. Comparison of testing time, number of parameters, and FLOPs for each architecture. 

Architecture 
Max Testing 

Time (s) 

Parameters 

(Million) 

FLOPs 

(Million) 

Efficiency (Time/Parameter, 

s per million) 

 

ConvNeXt Tiny 3,20 28,6 4.500 0,00071  

MobileNetV3 Large 2,92 5,4 219 0,01333  

EfficientNet B0 2,33 5,3 390 0,00597  

ConvNeXt Tiny achieved the lowest time per parameter ratio during both training and testing, indicating high 

computational efficiency per unit of model complexity. However, its overall training and testing durations 

were the longest, which may limit its suitability in time-sensitive applications. MobileNetV3 Large had the 

shortest training time, making it advantageous for rapid development cycles and deployment in environments 

with limited computational resources, despite a higher time per parameter ratio. EfficientNet B0 demonstrated 
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a balanced profile by offering moderate training time and the fastest testing time. This combination, along with 

its competitive accuracy, positions it as a well-rounded choice for practical applications. 

4. CONCLUSION 

This study evaluated and compared the performance of three CNN architectures, namely ConvNeXt Tiny, 

MobileNetV3 Large, and EfficientNet B0, for oral disease classification based on medical images, focusing 

on both accuracy and computational efficiency. The results showed that EfficientNet B0 achieved the highest 

accuracy (98.214%) while maintaining computational efficiency, making it the most suitable choice for 

deployment in resource-constrained clinical settings. ConvNeXt Tiny demonstrated robust performance across 

scenarios, albeit with higher resource demands, whereas MobileNetV3 Large offered a lightweight solution 

with competitive accuracy. The consistent improvements observed through data augmentation and fine-tuning 

further emphasize their essential role in enhancing model generalization. These findings provide valuable 

insights into selecting appropriate CNN architectures for real-world medical image diagnosis systems. 
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