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Abstract –Hate speech is a biased, antagonistic, and discriminatory expression that commonly appears on social media 

platforms, including TikTok. The high volume of comments and varied language styles make manual detection 

challenging. This research proposes a hate speech detection model using the Multinomial Naïve Bayes algorithm with 

smoothing to address zero-probability issues and enhance prediction performance. The dataset is split into 80% training 

and 20% testing portions. The model achieves an accuracy of 88.41%, with precision, recall, and F1-score showing 

balanced performance. A user evaluation involving 35 participants and 7,415 TikTok comments records a detection 

accuracy of 68.6%. The model is further implemented into a Google Chrome extension capable of real-time hate speech 

detection, displaying prediction probabilities and allowing user validation. This study aims to support healthier digital 

interactions by improving automated hate speech detection on social media.  
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1. INTRODUCTION 

Hate speech is defined as a biased, hostile, and malicious expression directed at an individual or group based 

on inherent characteristics [1]. Such expressions convey discriminatory, intimidating, antagonistic, or 

prejudiced attitudes toward traits such as gender, race, religion, ethnicity, skin color, national origin, disability, 

or sexual orientation. The primary aim of hate speech is to harm, discredit, harass, intimidate, insult, and 

victimize its targets while also fostering insensitivity and violence against them [2]. Detecting hate speech is 

crucial, particularly as traditional rule-based methods fall short in managing the massive volume of user-

generated content on social media and lack the flexibility to adapt to evolving language styles. In contrast, 

machine learning approaches have demonstrated promising results in automating hate speech detection and 

analyzing sentiments within text data [3]. 

In the era of globalization, information technology has become a powerful medium for rapid data transmission 

and communication. One rapidly growing digital platform is TikTok, which offers video-based content with a 

unique technical structure and extremely high user adoption [4]. Its features of imitation and remixing continue 

to accelerate diverse user interactions [5]. With more than 100 million downloads and a user rating of 4.4 on 

the Play Store, TikTok ranks fourth globally in user population, as stated by Julia Chan, Mobile Insights 

Analyst [6]. The platform’s comment section enables open expression however; the increasing volume of 

interactions has also led to a significant presence of intentional or unintentional hate speech. Hate speech 

contradicts linguistic politeness as an indicator of communicative intelligence and ethics, and the prevalence 

of insults, defamation, blasphemy, provocation, and hoaxes on social media including TikTok reflects the 

misuse of expressive freedom by users who often comment without considering the consequences, reinforced 

by the natural human tendency toward hatred [7]. 

Various classification methods have been applied in detecting hate speech, including Support Vector Machine 

(SVM), Deep Learning (DL), and Naïve Bayes (NB). While SVM performs well with non-linear problems, it 

is susceptible to overfitting, and DL can recognize complex text patterns but requires very large datasets. Naïve 
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Bayes offers a simpler and computationally efficient approach that performs well on both small and large 

datasets and is less prone to overfitting. However, Naïve Bayes often encounters zero-frequency issues when 

certain words do not appear in the training data, resulting in zero probabilities that degrade classification 

performance. Smoothing techniques are therefore applied to mitigate this problem and improve predictive 

accuracy [8]. 

Although previous studies have applied Naïve Bayes with smoothing for text classification, few have 

specifically integrated this optimized model with a real-time application capable of detecting hate speech 

directly within the TikTok comment section. The novelty of this research lies in combining the Multinomial 

Naïve Bayes algorithm enhanced with smoothing for improved accuracy and its implementation into a Google 

Chrome extension that performs real-time detection, displays prediction probabilities, and incorporates user 

validation feedback. This enhancement is particularly important because Laplacian smoothing commonly 

known as add-one smoothing, in which each variable in every parameter is increased by one [9] helps prevent 

zero probability issues and thereby increases model robustness. This integration addresses both technical and 

practical gaps by offering a lightweight, accurate, and user-interactive system for moderating hate speech on 

one of the world’s most active social media platforms. Therefore, this study aims to optimize Naïve Bayes 

using smoothing techniques and apply it in a real-time environment to support healthier and more responsible 

digital communication. 

2. RESEARCH METHODOLOGY 

Although modern classification methods such as Support Vector Machine (SVM) and Deep Learning (DL) 

have been widely applied in hate speech detection research, the selection of Naïve Bayes (NB) in this study is 

based on methodological considerations and the characteristics of the dataset. SVM is known for producing 

high accuracy and operating efficiently on complex non-linear classification problems. However, similar to 

other machine learning algorithms, SVM is prone to overfitting, particularly when parameter tuning is not 

performed properly [10].  

In the context of this research where comment data are highly dynamic, unstructured, and not always balanced 

this susceptibility to overfitting becomes a significant limitation. Deep Learning offers substantial advantages 

due to its ability to automatically learn features from raw data and extract complex patterns through its multiple 

hidden layers. Numerous studies demonstrate that DL achieves superior accuracy in hate speech detection and 

sentiment analysis tasks [6]. Nevertheless, DL models require a very large amount of data to perform 

effectively and to avoid overfitting [11]. Given the limited dataset used in this study, DL is not an ideal choice 

and may result in an unstable or unreliable model. In contrast, Naïve Bayes offers strong compatibility with 

both small and large datasets, and consistently performs well even in complex classification tasks [12]. NB 

estimates its parameters using the entire training dataset, which helps reduce the overfitting issues seen in SVM 

[13].  

Although NB has a known limitation related to zero probability where words that do not appear in the training 

data may result in a zero likelihood during prediction this issue can be effectively addressed using smoothing 

techniques [14]. Smoothing has been shown to significantly improve NB performance by preventing zero-

frequency problems and generating more robust probability estimates [15]. A study by research [8] 

demonstrated that NB combined with smoothing achieved a high accuracy of 95.9% in classifying eligibility 

for social assistance, highlighting its effectiveness in real-world mixed-data scenarios. Based on these findings, 

this study adopts NB with smoothing because it aligns well with the nature of TikTok comment data, which is 

diverse, moderate in size, and requires a model that is stable, fast, and resistant to overfitting. 

Therefore, the choice of Naïve Bayes does not disregard the strengths of modern algorithms. Instead, it is based 

on matching the method to the dataset characteristics, the need for model stability, computational efficiency, 

and ease of implementation. Naïve Bayes with smoothing is expected to yield high accuracy and provide 

meaningful contributions to improving hate speech detection systems on social media platforms. The research 

workflow, which utilizes the Naïve Bayes algorithm with smoothing and its implementation in a plugin, can 

be seen in Figure 1. 
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Figure 1. Research workflow. 

2.1. Problem Identification 

In the digital era, hate speech on social media is increasingly prevalent, and traditional rule-based methods are 

ineffective in handling the large and diverse volume of data. Therefore, this study aims to develop a machine 

learning model based on the Naïve Bayes algorithm to automatically detect hate speech in TikTok comment 

sections. 

2.2. Objective Determination 

The main objective of this study is to apply the Naïve Bayes algorithm with smoothing to improve the accuracy 

of hate speech detection in TikTok comments. Naïve Bayes is selected because it offers a strong balance 

between computational efficiency and classification performance, making it particularly suitable for 

environments with limited resources such as browser extensions. Unlike modern deep learning models that 

require heavy computation and large memory usage, Naïve Bayes provides fast inference with minimal 

overhead, ensuring that predictions can be generated instantly without affecting browser performance. This 

efficiency is crucial for real-time processing, as the plugin must analyze incoming comments continuously 

while maintaining a smooth user experience. Additionally, the study aims to develop a browser-based plugin 

capable of identifying hate speech in real time and providing clear visualizations to users. The lightweight 

nature of Naïve Bayes enables the plugin to run directly in the browser while still delivering accurate 

classifications, supporting the overall goal of creating a practical, responsive, and user-friendly hate speech 

detection tool for TikTok’s comment section. 

2.3. Literature Review 

The literature review was conducted by examining various previous studies related to hate speech detection, 

the machine learning methods used, and the implementation of technology in the form of browser extensions. 

The reviewed literature includes the use of statistical models, natural language processing (NLP) techniques, 

as well as lexicon-based and supervised learning approaches. 
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2.4. Requirements Analysis 

Requirements analysis is conducted to determine the specifications needed for plugin development. These 

requirements include functional aspects, such as automatic hate speech detection with visual effects on 

comments, as well as non-functional aspects such as compatibility with the Google Chrome browser and ease 

of use for general users. 

2.5. Plugin Design 

At this stage, system design is carried out, covering the plugin architecture and its working mechanism. The 

plugin consists of several main components: 

a. Content Script: Responsible for retrieving comments from the TikTok page in real time. 

b. Background Script: Acts as a bridge between the content script and the hate speech detection model. 

c. Popup UI: A user interface that allows sensitivity adjustment for detection and displays the results of 

comment analysis. 

d. Model Machine Learning: Implementation of Naïve Bayes with smoothing to detect hate speech based on 

the processed data. 

The detection mechanism is carried out in three stages: (1) extracting comments from the TikTok page, (2) 

analyzing them using a machine learning model, and (3) visualizing the detection results by highlighting 

comments identified as hate speech. 

2.6. Model Development 

Model development begins with the collection of TikTok comment datasets using web scraping techniques. 

The collected dataset then undergoes preprocessing stages [16], which include: 

2.6.1. Cleaning: Removing punctuation, numbers, and irrelevant special characters. 

2.6.2. Case Folding: Converting all text to lowercase for analysis consistency. 

2.6.3. Stopwords Removal: Removing common words that do not carry significant meaning. 

2.6.4. Normalization: Converting non-standard words into their standard forms. 

2.6.5. Tokenizing: Breaking the text into word units for further analysis. 

After preprocessing, data labeling is performed using a lexicon-based approach with the Indonesian Sentiment 

(InSet) Lexicon, which has been modified to detect hate speech. Features are then extracted using the TF-IDF 

(Term Frequency-Inverse Document Frequency) method to determine the weight of each word in the model 

analysis. Then, this research implements the Naïve Bayes algorithm with Laplace smoothing to improve 

prediction accuracy in detecting hate speech, as it is a simple probabilistic classifier that calculates a set of 

probabilities based on the frequency and combinations of values in the dataset [17].  

The model is trained using the preprocessed dataset and validated using test data. Finally, model evaluation is 

conducted through two approaches: first, the model is evaluated using a confusion matrix to compute accuracy, 

precision, recall, and F1-score; and second, a user evaluation is carried out by directly involving users to assess 

the model's performance in detecting hate speech. The final stage in model development is evaluation. This 

research includes two types of evaluation: model evaluation and user evaluation. For model evaluation, a 

confusion matrix is used to calculate accuracy, precision, recall, and F1-score. Meanwhile, user evaluation 

involves directly engaging users to assess the model’s ability to detect hate speech. 

2.6.6. Evaluation 

Evaluation is carried out in two main aspects, including model evaluation and user evaluation. 

a.  Machine Learning Model Evaluation 

To evaluate the performance of an algorithm, a confusion matrix is used, which includes 4 terms to represent 

classification results: true positive (TP), false positive (FP), true negative (TN), and false negative (FN). 
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Table 1. Confusion matrix 

Predicted 

Actual 
Positive Negative 

Positive TP (True Positive) FN (False Negative) 

Negative FP (False Positive) TN (True Negative) 

The evaluation is conducted by measuring the best performance based on accuracy, precision, recall, and 

F1-score [18]. These performance metrics can be calculated using the following equations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
        (1)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
         (3) 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙)
       (4) 

b.  User Evaluation 

In addition to these metrics, a model verification stage involving users is also included. This stage enables 

direct user involvement, where users interact with the plugin by using like and dislike buttons to indicate 

their agreement or disagreement with the classification results produced by the model. This participatory 

approach transforms users into active evaluators, allowing real-world validation of the model’s predictions. 

The collected feedback serves as valuable data that can be used to retrain and refine the model, thereby 

improving its accuracy and adaptability to evolving language patterns, slang, and context-specific 

expressions commonly found in TikTok comments. Furthermore, this process provides deeper insights into 

the model’s strengths such as identifying clear-cut hate speech and its weaknesses, particularly in dealing 

with ambiguous, sarcastic, or context-dependent language. By incorporating user validation into the 

evaluation framework, the system becomes more robust, user-centered, and capable of continuous 

improvement over time. 

2.7. Plugin Implementation  

After the model is developed, it is integrated with a Google Chrome-based plugin. The plugin is built using a 

combination of JavaScript, HTML, and CSS for the interface, and utilizes FastAPI as the backend to process 

comments with the machine learning model. 

2.8 Plugin Testing 

Testing is conducted to ensure that the plugin functions correctly in detecting hate speech in TikTok comment 

sections. This testing uses two main approaches: black box testing and white box testing: 

2.8.1. Black Box Testing 

Black box testing is a testing method that focuses on functionality, examining how the software responds to 

user-provided inputs to produce the desired outputs, without considering the internal processes or underlying 

code [19]. This testing approach emphasizes the external functionality of the plugin without taking into account 

how the internal processes work. The testing is conducted by enabling and disabling the hate speech detection 

plugin and observing how it identifies comments containing hate speech. 
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2.8.2. White Box Testing 

White box testing is a software testing technique that focuses on the internal structure of the application, 

including its logic, code structure, and program control flow [20]. This testing evaluates the internal working 

logic of the plugin by testing each core function that forms the hate speech detection system. The testing is 

carried out by thoroughly inspecting the source code. In white box testing, there are three main techniques, 

namely: 

i. Statement Coverage 

Statement Coverage is a testing technique that measures the percentage of code lines (statements) that have 

been executed at least once during testing. The main goal is to ensure that every line of code in the program 

has been tested. 

 

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑑𝑒
) ×  100%  (5) 

 

ii. Branch Coverage 

Branch Coverage (also known as Decision Coverage) measures the percentage of logical branches (true/false 

conditions) that have been executed during testing. It ensures that each decision point such as those in if, else, 

or switch statements has been tested in both true and false conditions. 

 

𝐵𝑟𝑎𝑛𝑐ℎ  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
) ×  100%   (6) 

 

iii. Path Coverage 

Path Coverage measures the percentage of all possible execution paths taken through a program during testing. 

It is a more comprehensive method because it ensures that every combination of logical paths is tested. 

 

𝑃𝑎𝑡ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑡𝑒𝑠𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑠
) ×  100%   (7) 

3. RESULT AND DISCUSSION 

The model development workflow in this research can be seen in Figure 2. 

3.1. Dataset Collection 

The dataset used for model development consists of comments from TikTok content, totaling 17,710 

comments. All comments were thoroughly processed for use as training data. Additionally, the dataset was 

split using an 80:20 ratio, where 80% of the total dataset was used for training, and the remaining 20% was 

used for testing. This step aimed to evaluate the ability of the hate speech detection plugin on Google Chrome 

for TikTok in recognizing and handling comments that the model had not previously encountered. Comment 

data was retrieved through the TikTok API by sending requests to the endpoint 

https://www.tiktok.com/api/comment/list/, utilizing the video ID along with parameters such as count and 

cursor for pagination. The received data, in JSON format, was processed to extract both comments and their 

replies. A recursive function was implemented to ensure that the entire conversation thread was captured. Once 

the data was collected, it was converted into a DataFrame and saved in CSV format for further analysis. 

3.2. Preprocessing Dataset 

Preprocessing was conducted to improve the quality and variability of the dataset, aiming to enhance the 

prediction results and the overall performance of the developed model. The preprocessing steps applied in this 

study include cleaning, case folding, stopword removal, normalization, and tokenizing. 
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Figure 2. Model development workflow. 

3.3. Labeling 

Labeling in this study used the Indonesian Sentiment Lexicon (INSET) from INSET GitHub 

(https://github.com/fajri91/InSet) [21], which was modified for hate speech detection. INSET is divided into 

two categories: a positive lexicon containing words with positive values, and a negative lexicon containing 

words with negative values. This modification aims to improve labeling accuracy for model development. 

Each word in the analyzed text is compared with the lexicon to determine its score. The polarity score is 

determined based on the values found in the positive lexicon (+1, +2, etc.) and the negative lexicon (−1, −2, 

etc.). 

 

Figure 3. Percentage of positive and negative comments from labeling results. 

Out of a total of 17,710 comments analyzed, after the preprocessing stage, 17,300 comments remained. These 

were then labeled using the InSet Lexicon method. The results showed that 8,921 comments were categorized 

as positive, while 8,379 comments were classified as negative. This indicates a relatively balanced sentiment 

distribution between positive and negative comments in the dataset used. 

https://github.com/fajri91/InSet
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3.4. Feature Extraction 

The feature extraction process in this research employed the Term Frequency-Inverse Document Frequency 

(TF-IDF) method, which measures the weight of words in a text. TF calculates the frequency of a word within 

a document, while IDF measures the importance of a word across the entire corpus. The combination of these 

two metrics results in a TF-IDF value that reflects the weight of a word. The final TF-IDF score is obtained by 

multiplying the TF and IDF values, which helps balance the term frequency in a document with its rarity across 

the corpus [22]. In the implementation, TfidfVectorizer from scikit-learn was used with the parameters 

max_features=8000, min_df=2, max_df=0.8, and ngram_range=(1, 2). Both unigram and bigram features were 

extracted to capture more complex word contexts. The resulting TF-IDF matrix was then used as features for 

training the model. 

3.5. Implementation of Naïve Bayes Algorithm with Smoothing  

Before training the model, a label distribution analysis was conducted on the training data. The results showed 

that the training data did not suffer from significant class imbalance, with label 1 (positive) comprising 51.57% 

and label 0 (negative) comprising 48.42% of the data. Since the difference in class proportions is relatively 

small (below 10%), this study did not apply any imbalance handling techniques such as undersampling or 

oversampling. Therefore, the training data was used as-is in the model training process. 

This research utilizes the Multinomial Naïve Bayes (MNB) model for hate speech classification, with a TF-

IDF Vectorizer configured with max_features=8000, min_df=2, max_df=0.8, and ngram_range=(1, 2) to 

capture relevant unigrams and bigrams. MNB relies on Bayes' Theorem and implicitly incorporates the Markov 

assumption, where the probability of a word or bigram depends on the preceding context. To address the issue 

of unseen words in the training data, Laplace Smoothing is applied with a smoothing parameter of alpha=1. 

The dataset is split with 80% for training and 20% for testing, ensuring objective model evaluation and good 

generalization capability. 

3.6. Evaluation 

3.6.1. Model Evaluation 

This research focuses on detecting hate speech in TikTok comment sections using the Naïve Bayes algorithm 

with smoothing. To evaluate the model's performance, tests were conducted on two variants of the Naïve Bayes 

algorithm: one with smoothing and one without. In addition to using evaluation metrics such as accuracy, 

precision, recall, and F1-score, the test results were also analyzed using a confusion matrix to illustrate the 

distribution of the model’s predictions. 

 

Figure 4. Confusion matrix results. 
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Based on the test results, the confusion matrix shows that the model correctly identified 1,464 hate speech 

comments as hate speech (True Positive/TP) and correctly identified 1,595 non-hate speech comments as non-

hate speech (True Negative/TN). However, there were 188 non-hate speech comments that were incorrectly 

classified as hate speech (False Positive/FP), and 213 hate speech comments that were incorrectly classified 

as non-hate speech (False Negative/FN). The classification model was also evaluated using several key metrics 

such as accuracy, precision, recall, and F1-score. This study further compares the performance metrics of the 

Naïve Bayes model with and without smoothing. 

Table 2. Model evaluation. 

 Naïve Bayes + Smoothing Naïve Bayes 

accuracy_test 0.884 0.860 

precision_test 0.884 0.861 

recall_test 0.884 0.860 

f1_test 0.884 0.861 

Based on Table 2, it can be observed that the Naïve Bayes model with smoothing outperforms the model 

without smoothing across all evaluation metrics. This improvement is attributed to the use of smoothing, which 

addresses the issue of zero probabilities for words that do not appear in certain classes. Consequently, 

smoothing helps enhance the model's prediction accuracy and contributes to more stable performance. 

3.6.2. User Evaluation 

 

Figure 5. User evaluation percentage. 

This research involved user testing with 35 participants who analyzed 7,415 comments from 36 TikTok videos 

to evaluate the accuracy of the hate speech detection model. The user testing results showed an accuracy of 

68.6%, with 5,084 comments correctly identified as hate speech, while 2,331 comments were incorrectly 

classified. Challenges in detection arose due to the complexity and diversity of TikTok comments, including 

the use of slang and dynamic context. Additionally, the model relied on the INSET lexicon, which may no 

longer be fully relevant due to the rapid evolution of language on the platform, highlighting the need for 

updates to improve detection accuracy. 

3.7. Plugin Implementation 

Plugins and extensions are software modules designed to add or modify the functionality of a main program 

without altering its source code [23]. This plugin was developed using JavaScript and the FastAPI framework, 
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with two main endpoints: /scrapping and /validasi. The /scrapping endpoint retrieves comments from TikTok, 

performs preprocessing, and classifies them using the Naïve Bayes model. The /validasi endpoint allows users 

to provide feedback via like or dislike buttons to validate the prediction results, which are then used for model 

retraining. The plugin is directly integrated into TikTok through a content script that monitors URL and 

content_id changes. For visualization, comments are color-coded based on the probability of hate speech. This 

plugin uses Manifest V3 to ensure efficiency and responsiveness in monitoring changes on TikTok pages. 

 

Figure 6. Plugin implementation. 

Figure 6 shows the user interface (UI) of a Chrome extension developed for this research, titled "Hate Speech 

Detection," which is designed to analyze comments on TikTok. The extension uses a Naive Bayes 

classification model to determine whether a comment contains hate speech. At the top, there is a toggle button 

that allows users to activate or deactivate the extension. When the toggle is turned off, the extension is inactive, 

and a message appears stating "Extension Not Active." The middle section displays a prediction probability 

legend that indicates the model’s confidence level in classifying a comment as hate speech. This is because the 

Naive Bayes algorithm predicts the class of a comment based on the probability derived from the input features. 

Gray represents a very low probability (0.50–0.60), yellow indicates low (0.60–0.70), orange indicates medium 

(0.70–0.80), red represents high (0.80–0.90), and dark red indicates a very high probability (0.90–1.00). These 

colors are used to visually highlight comments on the TikTok page, allowing users to quickly identify those 

that are likely to contain hate speech. 

Additionally, the interface includes an explanation of the validation buttons. The orange check mark is used 

when users confirm that a comment is indeed hate speech, while the blue cross mark is used when users indicate 

that a comment is not hate speech, despite being flagged by the system. This validation process is essential for 

collecting user feedback to help improve the model’s accuracy. At the bottom, the phrase “Powered by Naive 

Bayes” signifies that the detection algorithm is based on the Naive Bayes model, which works by calculating 

the likelihood of each class based on the input data. 

3.9. Plugin Testing 

The testing in this research was conducted using both black box testing and white box testing methods. 

3.9.1. Black Box Testing 

Black box testing is a software testing method that focuses on evaluating system functionality without any 

knowledge of the internal code or program structure. In this approach, testers only examine the relationship 
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between the given inputs and the outputs produced based on predefined test scenarios [24]. Test cases are 

developed to include a description of the scenario, the input data, the expected output, and the actual result in 

order to determine whether the system status is “pass” or “fail” [25]. In this study, six testing scenarios were 

conducted on the developed plugin, and all scenarios received a “pass” status, indicating that the plugin 

operates according to the specified requirements and intended objectives. 

3.9.2. White Box Testing 

White box testing, also referred to as clear box testing, glass box testing, or structural testing, is a software 

testing method that examines the internal logic and control flow of a program to ensure that all possible 

execution paths are exercised at least once [26]. In this research, white box testing was applied to two main 

functions, namely checkUrlChange and startScraping, using statement coverage, branch coverage, and path 

coverage techniques, which are commonly used to measure the thoroughness of internal code testing [27]. 

Testing of the checkUrlChange function demonstrated that all lines of code were executed and all logical 

branches operated correctly, including detecting URL changes and triggering the scraping process under 

specified conditions. Meanwhile, white box testing of the startScraping function showed that every execution 

path was covered, both when the contentId was successfully detected and when it was not, ensuring that the 

scraping function was called only when valid input was present and that an appropriate error message was 

generated otherwise. Based on these results, it can be concluded that both functions have been thoroughly 

tested and operate in accordance with the intended design and system requirements. 

3.10. Discussion 

Recent studies have addressed hate speech detection on social media. [18] used TF-IDF and SVM for TikTok 

comments and achieved strong results, with 96.21% accuracy and an F1-score of 95.50%. [28] compared 

several classifiers and found that MLP with SMOTE obtained the highest accuracy, while Multinomial Naïve 

Bayes without SMOTE produced the best recall (93.2%), showing that model selection and data balancing 

affect performance. Naïve Bayes has consistently shown advantages in related work. [29] achieved 93% 

accuracy on Twitter, and Prasetyo et al. (2024) improved Naïve Bayes performance using smoothing, reaching 

95.9% accuracy. These findings demonstrate that Naïve Bayes is effective for text classification, particularly 

because it is simple, computationally efficient, performs well on high-dimensional data such as TF-IDF, and 

remains robust even with limited training data. 

In this study, a smoothed Naïve Bayes model achieved 88% accuracy on TikTok comments. Although this 

result is lower than SVM-based research, Naïve Bayes is still preferable in this context due to its speed, low 

resource requirements, and suitability for real-time implementation. The main contribution of this research is 

a Google Chrome plugin that performs live hate speech detection directly in TikTok comment sections, 

providing practical value beyond accuracy alone. 

4. CONCLUSIONS 

This study successfully developed a hate speech detection model for TikTok comment sections using the 

Multinomial Naïve Bayes algorithm with smoothing. The model achieved an accuracy of 88.41%, with 

precision, recall, and F1-score values of 88.41% using TF-IDF features with n-grams (1,2). Furthermore, 

evaluation through user testing involving 35 participants and 7,415 TikTok comments resulted in a detection 

accuracy of 68.6%, indicating the model’s practical applicability in real usage scenarios. The novelty of this 

research is demonstrated through the integration of an optimized Naïve Bayes model with smoothing into a 

real-time Google Chrome extension capable of detecting hate speech directly within the TikTok comment 

section. This implementation provides probability-based visualization and incorporates user validation, 

offering a lightweight yet effective solution that bridges the gap between machine learning techniques and 

real-time online moderation tools an area that has received limited attention in prior studies. Future work may 

focus on expanding the dataset, employing more adaptive labeling strategies beyond the INSET lexicon, and 

exploring advanced or hybrid machine learning approaches, while maintaining the computational efficiency 

required for real-time deployment in browser-based environments. 
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