Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
©2025 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)

Detection of Hate Speech in TikTok Comment Sections Using the Naive Bayes
Algorithm with Smoothing Implementation

“TRoy Rafles Matorang Pasaribu, *Didik Kurniawan, 3Muhagqiqin, and ‘Akmal Junaidi

1.234Department of Computer Science, Faculty of Mathematics and Natural Sciences, University of Lampung,
J1. Soemantri Brojonegoro No.l Gedung Meneng, Bandar Lampung, Indonesia
e-mail: *'royraflmp@gmail.com, >didikunila@gmail.com, *muhaqigin@fmipa.unila.ac.id,
4akmal.junaidi@fmipa.unila.ac.id

Abstract —Hate speech is a biased, antagonistic, and discriminatory expression that commonly appears on social media
platforms, including TikTok. The high volume of comments and varied language styles make manual detection
challenging. This research proposes a hate speech detection model using the Multinomial Naive Bayes algorithm with
smoothing to address zero-probability issues and enhance prediction performance. The dataset is split into 80% training
and 20% testing portions. The model achieves an accuracy of 88.41%, with precision, recall, and FI-score showing
balanced performance. A user evaluation involving 35 participants and 7,415 TikTok comments records a detection
accuracy of 68.6%. The model is further implemented into a Google Chrome extension capable of real-time hate speech
detection, displaying prediction probabilities and allowing user validation. This study aims to support healthier digital
interactions by improving automated hate speech detection on social media.

Keywords: Hate Speech Detection; Naive Bayes; Smoothing; Machine Learning; Plugin.

1. INTRODUCTION

Hate speech is defined as a biased, hostile, and malicious expression directed at an individual or group based
on inherent characteristics [1]. Such expressions convey discriminatory, intimidating, antagonistic, or
prejudiced attitudes toward traits such as gender, race, religion, ethnicity, skin color, national origin, disability,
or sexual orientation. The primary aim of hate speech is to harm, discredit, harass, intimidate, insult, and
victimize its targets while also fostering insensitivity and violence against them [2]. Detecting hate speech is
crucial, particularly as traditional rule-based methods fall short in managing the massive volume of user-
generated content on social media and lack the flexibility to adapt to evolving language styles. In contrast,
machine learning approaches have demonstrated promising results in automating hate speech detection and
analyzing sentiments within text data [3].

In the era of globalization, information technology has become a powerful medium for rapid data transmission
and communication. One rapidly growing digital platform is TikTok, which offers video-based content with a
unique technical structure and extremely high user adoption [4]. Its features of imitation and remixing continue
to accelerate diverse user interactions [5]. With more than 100 million downloads and a user rating of 4.4 on
the Play Store, TikTok ranks fourth globally in user population, as stated by Julia Chan, Mobile Insights
Analyst [6]. The platform’s comment section enables open expression however; the increasing volume of
interactions has also led to a significant presence of intentional or unintentional hate speech. Hate speech
contradicts linguistic politeness as an indicator of communicative intelligence and ethics, and the prevalence
of insults, defamation, blasphemy, provocation, and hoaxes on social media including TikTok reflects the
misuse of expressive freedom by users who often comment without considering the consequences, reinforced
by the natural human tendency toward hatred [7].

Various classification methods have been applied in detecting hate speech, including Support Vector Machine
(SVM), Deep Learning (DL), and Naive Bayes (NB). While SVM performs well with non-linear problems, it
is susceptible to overfitting, and DL can recognize complex text patterns but requires very large datasets. Naive

207

mailto:royraflmp@gmail.com

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

Bayes offers a simpler and computationally efficient approach that performs well on both small and large
datasets and is less prone to overfitting. However, Naive Bayes often encounters zero-frequency issues when
certain words do not appear in the training data, resulting in zero probabilities that degrade classification
performance. Smoothing techniques are therefore applied to mitigate this problem and improve predictive
accuracy [8].

Although previous studies have applied Naive Bayes with smoothing for text classification, few have
specifically integrated this optimized model with a real-time application capable of detecting hate speech
directly within the TikTok comment section. The novelty of this research lies in combining the Multinomial
Naive Bayes algorithm enhanced with smoothing for improved accuracy and its implementation into a Google
Chrome extension that performs real-time detection, displays prediction probabilities, and incorporates user
validation feedback. This enhancement is particularly important because Laplacian smoothing commonly
known as add-one smoothing, in which each variable in every parameter is increased by one [9] helps prevent
zero probability issues and thereby increases model robustness. This integration addresses both technical and
practical gaps by offering a lightweight, accurate, and user-interactive system for moderating hate speech on
one of the world’s most active social media platforms. Therefore, this study aims to optimize Naive Bayes
using smoothing techniques and apply it in a real-time environment to support healthier and more responsible
digital communication.

2. RESEARCH METHODOLOGY

Although modern classification methods such as Support Vector Machine (SVM) and Deep Learning (DL)
have been widely applied in hate speech detection research, the selection of Naive Bayes (NB) in this study is
based on methodological considerations and the characteristics of the dataset. SVM is known for producing
high accuracy and operating efficiently on complex non-linear classification problems. However, similar to
other machine learning algorithms, SVM is prone to overfitting, particularly when parameter tuning is not
performed properly [10].

In the context of this research where comment data are highly dynamic, unstructured, and not always balanced
this susceptibility to overfitting becomes a significant limitation. Deep Learning offers substantial advantages
due to its ability to automatically learn features from raw data and extract complex patterns through its multiple
hidden layers. Numerous studies demonstrate that DL achieves superior accuracy in hate speech detection and
sentiment analysis tasks [6]. Nevertheless, DL models require a very large amount of data to perform
effectively and to avoid overfitting [11]. Given the limited dataset used in this study, DL is not an ideal choice
and may result in an unstable or unreliable model. In contrast, Naive Bayes offers strong compatibility with
both small and large datasets, and consistently performs well even in complex classification tasks [12]. NB
estimates its parameters using the entire training dataset, which helps reduce the overfitting issues seen in SVM
[13].

Although NB has a known limitation related to zero probability where words that do not appear in the training
data may result in a zero likelihood during prediction this issue can be effectively addressed using smoothing
techniques [14]. Smoothing has been shown to significantly improve NB performance by preventing zero-
frequency problems and generating more robust probability estimates [15]. A study by research [8]
demonstrated that NB combined with smoothing achieved a high accuracy of 95.9% in classifying eligibility
for social assistance, highlighting its effectiveness in real-world mixed-data scenarios. Based on these findings,
this study adopts NB with smoothing because it aligns well with the nature of TikTok comment data, which is
diverse, moderate in size, and requires a model that is stable, fast, and resistant to overfitting.

Therefore, the choice of Naive Bayes does not disregard the strengths of modern algorithms. Instead, it is based
on matching the method to the dataset characteristics, the need for model stability, computational efficiency,
and ease of implementation. Naive Bayes with smoothing is expected to yield high accuracy and provide
meaningful contributions to improving hate speech detection systems on social media platforms. The research
workflow, which utilizes the Naive Bayes algorithm with smoothing and its implementation in a plugin, can
be seen in Figure 1.

208

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

Problem Identification Objective Determination Literature Review

Model Development Plugin Design Requirements Analysis

l

Plugin Implementation

l

Plugin Testing

ya
4

conclusions

Figure 1. Research workflow.

2.1. Problem Identification

In the digital era, hate speech on social media is increasingly prevalent, and traditional rule-based methods are
ineffective in handling the large and diverse volume of data. Therefore, this study aims to develop a machine
learning model based on the Naive Bayes algorithm to automatically detect hate speech in TikTok comment
sections.

2.2. Objective Determination

The main objective of this study is to apply the Naive Bayes algorithm with smoothing to improve the accuracy
of hate speech detection in TikTok comments. Naive Bayes is selected because it offers a strong balance
between computational efficiency and classification performance, making it particularly suitable for
environments with limited resources such as browser extensions. Unlike modern deep learning models that
require heavy computation and large memory usage, Naive Bayes provides fast inference with minimal
overhead, ensuring that predictions can be generated instantly without affecting browser performance. This
efficiency is crucial for real-time processing, as the plugin must analyze incoming comments continuously
while maintaining a smooth user experience. Additionally, the study aims to develop a browser-based plugin
capable of identifying hate speech in real time and providing clear visualizations to users. The lightweight
nature of Naive Bayes enables the plugin to run directly in the browser while still delivering accurate
classifications, supporting the overall goal of creating a practical, responsive, and user-friendly hate speech
detection tool for TikTok’s comment section.

2.3. Literature Review

The literature review was conducted by examining various previous studies related to hate speech detection,
the machine learning methods used, and the implementation of technology in the form of browser extensions.
The reviewed literature includes the use of statistical models, natural language processing (NLP) techniques,
as well as lexicon-based and supervised learning approaches.

209

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

2.4. Requirements Analysis

Requirements analysis is conducted to determine the specifications needed for plugin development. These
requirements include functional aspects, such as automatic hate speech detection with visual effects on
comments, as well as non-functional aspects such as compatibility with the Google Chrome browser and ease
of use for general users.

2.5. Plugin Design

At this stage, system design is carried out, covering the plugin architecture and its working mechanism. The
plugin consists of several main components:

a. Content Script: Responsible for retrieving comments from the TikTok page in real time.

b. Background Script: Acts as a bridge between the content script and the hate speech detection model.

c. Popup UIL: A user interface that allows sensitivity adjustment for detection and displays the results of
comment analysis.

d. Model Machine Learning: Implementation of Naive Bayes with smoothing to detect hate speech based on
the processed data.

The detection mechanism is carried out in three stages: (1) extracting comments from the TikTok page, (2)
analyzing them using a machine learning model, and (3) visualizing the detection results by highlighting
comments identified as hate speech.

2.6. Model Development

Model development begins with the collection of TikTok comment datasets using web scraping techniques.
The collected dataset then undergoes preprocessing stages [16], which include:

2.6.1. Cleaning: Removing punctuation, numbers, and irrelevant special characters.

2.6.2. Case Folding: Converting all text to lowercase for analysis consistency.

2.6.3. Stopwords Removal: Removing common words that do not carry significant meaning.
2.6.4. Normalization: Converting non-standard words into their standard forms.

2.6.5. Tokenizing: Breaking the text into word units for further analysis.

After preprocessing, data labeling is performed using a lexicon-based approach with the Indonesian Sentiment
(InSet) Lexicon, which has been modified to detect hate speech. Features are then extracted using the TF-IDF
(Term Frequency-Inverse Document Frequency) method to determine the weight of each word in the model
analysis. Then, this research implements the Naive Bayes algorithm with Laplace smoothing to improve
prediction accuracy in detecting hate speech, as it is a simple probabilistic classifier that calculates a set of
probabilities based on the frequency and combinations of values in the dataset [17].

The model is trained using the preprocessed dataset and validated using test data. Finally, model evaluation is
conducted through two approaches: first, the model is evaluated using a confusion matrix to compute accuracy,
precision, recall, and F1-score; and second, a user evaluation is carried out by directly involving users to assess
the model's performance in detecting hate speech. The final stage in model development is evaluation. This
research includes two types of evaluation: model evaluation and user evaluation. For model evaluation, a
confusion matrix is used to calculate accuracy, precision, recall, and F1-score. Meanwhile, user evaluation
involves directly engaging users to assess the model’s ability to detect hate speech.

2.6.6. Evaluation

Evaluation is carried out in two main aspects, including model evaluation and user evaluation.

a. Machine Learning Model Evaluation

To evaluate the performance of an algorithm, a confusion matrix is used, which includes 4 terms to represent
classification results: true positive (TP), false positive (FP), true negative (TN), and false negative (FN).

210

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

Table 1. Confusion matrix

Predicted
Positive Negative
Actual
Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

The evaluation is conducted by measuring the best performance based on accuracy, precision, recall, and
F1-score [18]. These performance metrics can be calculated using the following equations.

(TP+TN)

Accuracy = o e T |
o TP
Precision = (TP+FP) .
TP
Recall = (TP+FN) ;

(recall x precision)

f1l—score=2x —
(precision+recal)

4)
b. User Evaluation

In addition to these metrics, a model verification stage involving users is also included. This stage enables
direct user involvement, where users interact with the plugin by using like and dislike buttons to indicate
their agreement or disagreement with the classification results produced by the model. This participatory
approach transforms users into active evaluators, allowing real-world validation of the model’s predictions.
The collected feedback serves as valuable data that can be used to retrain and refine the model, thereby
improving its accuracy and adaptability to evolving language patterns, slang, and context-specific
expressions commonly found in TikTok comments. Furthermore, this process provides deeper insights into
the model’s strengths such as identifying clear-cut hate speech and its weaknesses, particularly in dealing
with ambiguous, sarcastic, or context-dependent language. By incorporating user validation into the
evaluation framework, the system becomes more robust, user-centered, and capable of continuous
improvement over time.

2.7. Plugin Implementation

After the model is developed, it is integrated with a Google Chrome-based plugin. The plugin is built using a
combination of JavaScript, HTML, and CSS for the interface, and utilizes FastAPI as the backend to process
comments with the machine learning model.

2.8 Plugin Testing

Testing is conducted to ensure that the plugin functions correctly in detecting hate speech in TikTok comment
sections. This testing uses two main approaches: black box testing and white box testing:

2.8.1. Black Box Testing

Black box testing is a testing method that focuses on functionality, examining how the software responds to
user-provided inputs to produce the desired outputs, without considering the internal processes or underlying
code [19]. This testing approach emphasizes the external functionality of the plugin without taking into account
how the internal processes work. The testing is conducted by enabling and disabling the hate speech detection
plugin and observing how it identifies comments containing hate speech.

211

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

2.8.2. White Box Testing

White box testing is a software testing technique that focuses on the internal structure of the application,
including its logic, code structure, and program control flow [20]. This testing evaluates the internal working
logic of the plugin by testing each core function that forms the hate speech detection system. The testing is
carried out by thoroughly inspecting the source code. In white box testing, there are three main techniques,
namely:

i. Statement Coverage

Statement Coverage is a testing technique that measures the percentage of code lines (statements) that have
been executed at least once during testing. The main goal is to ensure that every line of code in the program
has been tested.

Number of statements executed

Statement Coverage = () X 100%)

Total statements in the code

ii. Branch Coverage

Branch Coverage (also known as Decision Coverage) measures the percentage of logical branches (true/false
conditions) that have been executed during testing. It ensures that each decision point such as those in if, else,
or switch statements has been tested in both true and false conditions.

Number of branches executed

Branch Coverage = () X 100% 6)

Total logical branches

iii. =~ Path Coverage
Path Coverage measures the percentage of all possible execution paths taken through a program during testing.
It is a more comprehensive method because it ensures that every combination of logical paths is tested.

Number of paths tested

Path Coverage = () X 100% @)

Total possible execution paths

3. RESULT AND DISCUSSION

The model development workflow in this research can be seen in Figure 2.

3.1. Dataset Collection

The dataset used for model development consists of comments from TikTok content, totaling 17,710
comments. All comments were thoroughly processed for use as training data. Additionally, the dataset was
split using an 80:20 ratio, where 80% of the total dataset was used for training, and the remaining 20% was
used for testing. This step aimed to evaluate the ability of the hate speech detection plugin on Google Chrome
for TikTok in recognizing and handling comments that the model had not previously encountered. Comment
data was retrieved through the TikTok API by sending requests to the endpoint
https://www.tiktok.com/api/comment/list/, utilizing the video ID along with parameters such as count and
cursor for pagination. The received data, in JSON format, was processed to extract both comments and their
replies. A recursive function was implemented to ensure that the entire conversation thread was captured. Once
the data was collected, it was converted into a DataFrame and saved in CSV format for further analysis.

3.2. Preprocessing Dataset
Preprocessing was conducted to improve the quality and variability of the dataset, aiming to enhance the

prediction results and the overall performance of the developed model. The preprocessing steps applied in this
study include cleaning, case folding, stopword removal, normalization, and tokenizing.

212

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

Model Development

Dataset Collection

|

Preprocessing

\
Cleaning teks } [Case folding] { Tokenization swnpwordremwal] [Normalization]
J

Labeling

Feature Extraction
TF-IDF

Implementation of Naive Bayes Algorithm with Smoothing

!

Evaluation

Figure 2. Model development workflow.
3.3. Labeling

Labeling in this study used the Indonesian Sentiment Lexicon (INSET) from INSET GitHub
(https://github.com/fajri91/InSet) [21], which was modified for hate speech detection. INSET is divided into
two categories: a positive lexicon containing words with positive values, and a negative lexicon containing
words with negative values. This modification aims to improve labeling accuracy for model development.
Each word in the analyzed text is compared with the lexicon to determine its score. The polarity score is
determined based on the values found in the positive lexicon (+1, +2, etc.) and the negative lexicon (—1, =2,
etc.).

Sentiment Polarity on Review Data

positive

negative
Figure 3. Percentage of positive and negative comments from labeling results.

Out of a total of 17,710 comments analyzed, after the preprocessing stage, 17,300 comments remained. These
were then labeled using the InSet Lexicon method. The results showed that 8,921 comments were categorized
as positive, while 8,379 comments were classified as negative. This indicates a relatively balanced sentiment
distribution between positive and negative comments in the dataset used.

213

https://github.com/fajri91/InSet

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

3.4. Feature Extraction

The feature extraction process in this research employed the Term Frequency-Inverse Document Frequency
(TF-IDF) method, which measures the weight of words in a text. TF calculates the frequency of a word within
a document, while IDF measures the importance of a word across the entire corpus. The combination of these
two metrics results in a TF-IDF value that reflects the weight of a word. The final TF-IDF score is obtained by
multiplying the TF and IDF values, which helps balance the term frequency in a document with its rarity across
the corpus [22]. In the implementation, TfidfVectorizer from scikit-learn was used with the parameters
max_features=8000, min_df=2, max_df=0.8, and ngram_range=(1, 2). Both unigram and bigram features were
extracted to capture more complex word contexts. The resulting TF-IDF matrix was then used as features for
training the model.

3.5. Implementation of Naive Bayes Algorithm with Smoothing

Before training the model, a label distribution analysis was conducted on the training data. The results showed
that the training data did not suffer from significant class imbalance, with label 1 (positive) comprising 51.57%
and label 0 (negative) comprising 48.42% of the data. Since the difference in class proportions is relatively
small (below 10%), this study did not apply any imbalance handling techniques such as undersampling or
oversampling. Therefore, the training data was used as-is in the model training process.

This research utilizes the Multinomial Naive Bayes (MNB) model for hate speech classification, with a TF-
IDF Vectorizer configured with max_features=8000, min_df=2, max_df=0.8, and ngram_ range=(1, 2) to
capture relevant unigrams and bigrams. MNB relies on Bayes' Theorem and implicitly incorporates the Markov
assumption, where the probability of a word or bigram depends on the preceding context. To address the issue
of unseen words in the training data, Laplace Smoothing is applied with a smoothing parameter of alpha=1.
The dataset is split with 80% for training and 20% for testing, ensuring objective model evaluation and good
generalization capability.

3.6. Evaluation
3.6.1. Model Evaluation

This research focuses on detecting hate speech in TikTok comment sections using the Naive Bayes algorithm
with smoothing. To evaluate the model's performance, tests were conducted on two variants of the Naive Bayes
algorithm: one with smoothing and one without. In addition to using evaluation metrics such as accuracy,
precision, recall, and F1-score, the test results were also analyzed using a confusion matrix to illustrate the
distribution of the model’s predictions.

Confusion Matrix

1400

negative 500

1000

True label

positive

negative positive
Predicted label

Figure 4. Confusion matrix results.

214

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

Based on the test results, the confusion matrix shows that the model correctly identified 1,464 hate speech
comments as hate speech (True Positive/TP) and correctly identified 1,595 non-hate speech comments as non-
hate speech (True Negative/TN). However, there were 188 non-hate speech comments that were incorrectly
classified as hate speech (False Positive/FP), and 213 hate speech comments that were incorrectly classified
as non-hate speech (False Negative/FN). The classification model was also evaluated using several key metrics
such as accuracy, precision, recall, and F1-score. This study further compares the performance metrics of the
Naive Bayes model with and without smoothing.

Table 2. Model evaluation.

Naive Bayes + Smoothing Naive Bayes
accuracy_test 0.884 0.860
precision_test 0.884 0.861
recall_test 0.884 0.860
fl_test 0.884 0.861

Based on Table 2, it can be observed that the Naive Bayes model with smoothing outperforms the model
without smoothing across all evaluation metrics. This improvement is attributed to the use of smoothing, which
addresses the issue of zero probabilities for words that do not appear in certain classes. Consequently,
smoothing helps enhance the model's prediction accuracy and contributes to more stable performance.

3.6.2. User Evaluation

User Result

Hate Speech Incorrect (0)

31.4%

Hate Speech Correct (1)
e
-

Figure 5. User evaluation percentage.

This research involved user testing with 35 participants who analyzed 7,415 comments from 36 TikTok videos
to evaluate the accuracy of the hate speech detection model. The user testing results showed an accuracy of
68.6%, with 5,084 comments correctly identified as hate speech, while 2,331 comments were incorrectly
classified. Challenges in detection arose due to the complexity and diversity of TikTok comments, including
the use of slang and dynamic context. Additionally, the model relied on the INSET lexicon, which may no
longer be fully relevant due to the rapid evolution of language on the platform, highlighting the need for
updates to improve detection accuracy.

3.7. Plugin Implementation

Plugins and extensions are software modules designed to add or modify the functionality of a main program
without altering its source code [23]. This plugin was developed using JavaScript and the FastAPI framework,

215

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

with two main endpoints: /scrapping and /validasi. The /scrapping endpoint retrieves comments from TikTok,
performs preprocessing, and classifies them using the Naive Bayes model. The /validasi endpoint allows users
to provide feedback via like or dislike buttons to validate the prediction results, which are then used for model
retraining. The plugin is directly integrated into TikTok through a content script that monitors URL and
content_id changes. For visualization, comments are color-coded based on the probability of hate speech. This
plugin uses Manifest V3 to ensure efficiency and responsiveness in monitoring changes on TikTok pages.

Deteksi Hate Speech

Analisis komentar TikTok.

Extension Tidak Aktif

Keterangan Probabilitas Prediksi:
Sangat Kecil [0.50,0.60)
Kecil [0.60,0.70)
Sedang [0.70,0.80)

. Tinggi [0.80,0.90)

@ Sangat Tinggi [0.90-1.00]

Keterangan Tombol Validasi:
| hate speech terdeteksi benar.

hate speech terdeteksi salah

Figure 6. Plugin implementation.

Figure 6 shows the user interface (UI) of a Chrome extension developed for this research, titled "Hate Speech
Detection," which is designed to analyze comments on TikTok. The extension uses a Naive Bayes
classification model to determine whether a comment contains hate speech. At the top, there is a toggle button
that allows users to activate or deactivate the extension. When the toggle is turned off, the extension is inactive,
and a message appears stating "Extension Not Active." The middle section displays a prediction probability
legend that indicates the model’s confidence level in classifying a comment as hate speech. This is because the
Naive Bayes algorithm predicts the class of a comment based on the probability derived from the input features.
Gray represents a very low probability (0.50-0.60), yellow indicates low (0.60—0.70), orange indicates medium
(0.70-0.80), red represents high (0.80—0.90), and dark red indicates a very high probability (0.90—1.00). These
colors are used to visually highlight comments on the TikTok page, allowing users to quickly identify those
that are likely to contain hate speech.

Additionally, the interface includes an explanation of the validation buttons. The orange check mark is used
when users confirm that a comment is indeed hate speech, while the blue cross mark is used when users indicate
that a comment is not hate speech, despite being flagged by the system. This validation process is essential for
collecting user feedback to help improve the model’s accuracy. At the bottom, the phrase “Powered by Naive
Bayes” signifies that the detection algorithm is based on the Naive Bayes model, which works by calculating
the likelihood of each class based on the input data.

3.9. Plugin Testing
The testing in this research was conducted using both black box testing and white box testing methods.
3.9.1. Black Box Testing

Black box testing is a software testing method that focuses on evaluating system functionality without any
knowledge of the internal code or program structure. In this approach, testers only examine the relationship

216

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

between the given inputs and the outputs produced based on predefined test scenarios [24]. Test cases are
developed to include a description of the scenario, the input data, the expected output, and the actual result in
order to determine whether the system status is “pass” or “fail” [25]. In this study, six testing scenarios were
conducted on the developed plugin, and all scenarios received a “pass” status, indicating that the plugin
operates according to the specified requirements and intended objectives.

3.9.2. White Box Testing

White box testing, also referred to as clear box testing, glass box testing, or structural testing, is a software
testing method that examines the internal logic and control flow of a program to ensure that all possible
execution paths are exercised at least once [26]. In this research, white box testing was applied to two main
functions, namely checkUrlChange and startScraping, using statement coverage, branch coverage, and path
coverage techniques, which are commonly used to measure the thoroughness of internal code testing [27].
Testing of the checkUrlChange function demonstrated that all lines of code were executed and all logical
branches operated correctly, including detecting URL changes and triggering the scraping process under
specified conditions. Meanwhile, white box testing of the startScraping function showed that every execution
path was covered, both when the contentld was successfully detected and when it was not, ensuring that the
scraping function was called only when valid input was present and that an appropriate error message was
generated otherwise. Based on these results, it can be concluded that both functions have been thoroughly
tested and operate in accordance with the intended design and system requirements.

3.10. Discussion

Recent studies have addressed hate speech detection on social media. [18] used TF-IDF and SVM for TikTok
comments and achieved strong results, with 96.21% accuracy and an F1-score of 95.50%. [28] compared
several classifiers and found that MLP with SMOTE obtained the highest accuracy, while Multinomial Naive
Bayes without SMOTE produced the best recall (93.2%), showing that model selection and data balancing
affect performance. Naive Bayes has consistently shown advantages in related work. [29] achieved 93%
accuracy on Twitter, and Prasetyo et al. (2024) improved Naive Bayes performance using smoothing, reaching
95.9% accuracy. These findings demonstrate that Naive Bayes is effective for text classification, particularly
because it is simple, computationally efficient, performs well on high-dimensional data such as TF-IDF, and
remains robust even with limited training data.

In this study, a smoothed Naive Bayes model achieved 88% accuracy on TikTok comments. Although this
result is lower than SVM-based research, Naive Bayes is still preferable in this context due to its speed, low
resource requirements, and suitability for real-time implementation. The main contribution of this research is
a Google Chrome plugin that performs live hate speech detection directly in TikTok comment sections,
providing practical value beyond accuracy alone.

4. CONCLUSIONS

This study successfully developed a hate speech detection model for TikTok comment sections using the
Multinomial Naive Bayes algorithm with smoothing. The model achieved an accuracy of 88.41%, with
precision, recall, and F1-score values of 88.41% using TF-IDF features with n-grams (1,2). Furthermore,
evaluation through user testing involving 35 participants and 7,415 TikTok comments resulted in a detection
accuracy of 68.6%, indicating the model’s practical applicability in real usage scenarios. The novelty of this
research is demonstrated through the integration of an optimized Naive Bayes model with smoothing into a
real-time Google Chrome extension capable of detecting hate speech directly within the TikTok comment
section. This implementation provides probability-based visualization and incorporates user validation,
offering a lightweight yet effective solution that bridges the gap between machine learning techniques and
real-time online moderation tools an area that has received limited attention in prior studies. Future work may
focus on expanding the dataset, employing more adaptive labeling strategies beyond the INSET lexicon, and
exploring advanced or hybrid machine learning approaches, while maintaining the computational efficiency
required for real-time deployment in browser-based environments.

217

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

LITERATURE

[1]

2]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. Poletto, V. Basile, M. Sanguinetti, C. Bosco, and V. Patti, “Resources and Benchmark Corpora for
Hate Speech Detection: A Systematic Review, Language Resources and Evaluation, vol. 55, no. 2,
pp. 477-523, 2021.

C. Elliott, W. Chuma, and Y. E. Gendi, “Hate Speech, Key Concept Paper”, Media Conflict and
Democratisation (MeCoDEM), United Kingdom, 2016.

M. Subramanian, S. V. Easwaramoorthy, G. Deepalakshmi, J. Cho, and G. Manikandan, “A Survey
on Hate Speech Detection and Sentiment Analysis Using Machine Learning and Deep Learning
Models”, Alexandria Engineering Journal, vol. 80, pp. 110-121, 2023.

C. M. Murphy and D. McCashin, “Using TikTok for Public and Youthmental Health - a Systematic
Review and Content Analysis”, Clinical Child Psychology and Psychiatry, vol. 28, no. 1, pp. 279-3006,
2023.

D. Zulli and D. J. Zulli, “Extending the Internet Meme: Conceptualizing Technological Mimesis and
Imitation Publics on the TikTok Platform”, New Media and Society, vol. 24, no. 8, pp. 1872-1890,
2022.

S. V. Mahardhika, I. Nurjannah, 1. I. Ma’una, and Z. Islamiyah, “Faktor-Faktor Penyebab Tingginya
Minat Generasi Post-Millenial Di Indonesia Terhadap Penggunaan Aplikasi Tik-Tok”, SOSEARCH:
Social Science Educational Research, vol. 2, no. 1, pp. 40-53, 2021.

R. N. Ria and T. Setiawan, “Forensic Linguistic Analysis of Netizens’ Hate Speech Acts in Tik-Tok
Comment Section”, Britain International of Linguistics Arts and Education (BloLAE) Journal, vol. 5,
no. 2, pp. 141-152, 2023.

E. Prasetyo, M. F. Al-adni, and R. F. Tias, “Classification of Cash Direct Recipients Using the Naive
Bayes with Smoothing”, Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 23,
no. 3, pp. 615-626, 2024.

A. Ali, A. Khairan, F. Tempola, and A. Fuad, “Application of Naive Bayes to Predict the Potential of
Rain in Ternate City”, E3S Web of Conferences, vol. 328, 2021.

D. A Pisner and D. M. Schnyer, Support Vector Machine. In Machine Learning: Methods and
Applications to Brain Disorders, Elsevier Inc, 2019.

R. K. Putri, M. Athoillah, A. Haqiqiyah, and F. W. A. Lestari, “Deteksi Penggunaan Masker Wajah
Dengan Algoritma Deep Learning”, Prosiding Seminar Nasional Hasil Riset dan Pengabdian.
Surabaya, 2023.

V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “Al-based Smart Prediction of Clinical Disease
Using Random Forest Classifier and Naive Bayes, Journal of Supercomputing, vol. 77, no. 5, pp. 5198-
5219, 2021.

Y. Tan and P. P. Shenoy, “A Bias-Variance Based Heuristic for Constructing a Hybrid Logistic
Regression-Naive Bayes Model for Classification”, International Journal of Approximate Reasoning,
vol. 117, pp. 15-28, 2020.

A. P. Noto and D. R. S. Saputro, “Classification Data Mining with Laplacian Smoothing on Naive
Bayes Method, AIP Conference Proceedings, Solo, 2022.

J. Pan, M. Sun, Y. Wang, and X. Zhang, “An Enhanced Spatial Smoothing Technique with ESPRIT
Algorithm for Direction of Arrival Estimation in Coherent Scenarios”, IEEE Transactions on Signal
Processing, vol. 68, pp. 3635-3643, 2020.

A. W. Pradana and M. Hayaty, "The Effect of Stemming and Removal of Stopwords on the Accuracy
of Sentiment Analysis on Indonesian-language Texts”, Kinetik: Game Technology, Information
System, Computer Network, Computing, Electronics, and Control, vol. 4, no. 3, pp. 375-380, 2019.

218

Vol. 6 No. 3, 2025, pp. 207-219 Jurnal Pepadun
© 2025 The Authors | doi: 10.23960/pepadun.v6i3.268

[17]

[20]

[21]

[25]
[26]
[27]

[28]

[29]

M. M. Saritas and A. Yasar, “Performance Analysis of ANN and Naive Bayes Classification
Algorithm for Data Classification”, IJISAE: International Journal of Intelligent Systems and
Applications in Engineering, vol. 7, no. 2, pp. 88-91, 2019.

A. Ariska and M. Kamayani, “Deteksi Hate Speech pada Kolom Komentar TikTok dengan
Menggunakan SVM?”, Indonesian Journal of Computer Science, vol. 13, no. 3, pp. 284-301, 2024.

D. Febiharsa, I. M. Sudana, and N. Hudallah, “Uji Fungsionalitas (Blackbox Testing) Sistem Informasi
Lembaga Sertifikasi Profesi (SILSP) Batik dengan AppPerfect Web Test dan Uji Pengguna”, Joined
Journal (Journal of Informatics Education), vol. 1, no. 2, pp. 117, 2019.

A. Verma, A. Khatana, and S. Chaudhary, “A Comparative Study of Black Box Testing and White
Box Testing”, International Journal of Computer Sciences and Engineering, vol. 5, no. 12, pp. 301-
304, 2017.

F. Koto and Y. R. Gemala, “InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment
Analysis in Microblogs”, International Conference on Asian Language Processing (IALP), pp. 391-
394, 2017.

Z. Zhu, J. Liang, D. Li, H. Yu, and G. Liu, “Hot Topic Detection Based on a Refined TF-IDF
Algorithm”, IEEFE Access, vol. 7, pp. 26996-27007, 2019.

K. Teguh, K. Kridalukmana, R. Rinta and M. Martono, “Pembuatan Chrome Extension untuk Akses
Website Sistem Komputer”, Proceedings Business Intelligence.: Extending Your Business, pp. 81-92,
2012.

M. N. Huda, M. Burhan, A. Satibi, H. A. Pradita, and A. Saifudin, “Implementasi Black Box Testing
pada Aplikasi Sistem Kasir dengan Menggunakan Teknik Equivalence Partitions”, Jurnal Teknologi
Sistem Informasi dan Aplikasi, 2023.

S. Robinson and M. Heusser, “Black-box testing”, TechTarget: SearchSoftwareQuality, 2024.
G. J. Myers, C. Sandler, and T. Badgett, The Art of Sofiware Testing (3rd ed.), Wiley, 2011.

P. Ammann, and J. Offutt, Introduction to Software Testing (2nd ed.), Cambridge University Press,
2016.

T. T. A. Putri, S. Sriadhi, R. D. Sari, R. Rahmadani, and H. D. Hutahaean, “A Comparison of
Classification Algorithms for Hate Speech Detection”, IOP Conference Series: Materials Science and
Engineering, vol. 830, no. 3, 2020.

N. R. Fatahillah, P. Suryati, and C. Haryawan, “Implementation of Naive Bayes Classifier Algorithm
on Social Media (Twitter) to the Teaching of Indonesian Hate Speech”, Proceedings - 2017
International Conference on Sustainable Information Engineering and Technology, pp. 128-131,
2017.

219

