
Vol. 6 No. 2, 2025, pp. 120-130    Jurnal Pepadun 

© 2025 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) 

120 

Development of Virtual Assistant using OpenAI Assistant for Immigration Services 

*1Shalahuddin Abdul Aziz, 2Rico Andrian, 3Muhaqiqin, and 4Admi Syarif 

1,2,3,4Department of Computer Science, University of Lampung, 

Jalan Prof. Dr. Sumantri Brojonegoro Nomor 1, Bandar Lampung, Indonesia 

e-mail: *1shalahuddin.abdul21@students.unila.ac.id, 2rico.andrian@fmipa.unila.ac.id, 3muhaqiqin@fmipa.unila.ac.id, 
4admi.syarif@fmipa.unila.ac.id  

 

Abstract - The development of technology in the fields of Artificial Intelligence (AI) and Machine Learning (ML) has resulted 

in technologies such as Large Language Models (LLM). LLM is a technology that enables humans to communicate with 

computers in a natural manner. This technology has the potential to replace customer service in many sectors by utilizing 

Virtual Assistants based on LLM. This research aims to develop a virtual assistant that can replace customer service and address 

the Frequently Asked Questions of the Directorate General of Immigration. The study was conducted at the Department of 

Computer Science, University of Lampung, from September 2024 to January 2025. The technologies used include OpenAI 

Assistant along with LLM GPT-4o, OpenAI Whisper, Next.js 14, MongoDB, and Typescript. The knowledge base for the virtual 

assistant utilizes Constitution No. 6 of 2011 as the foundational knowledge to ensure that the answers provided are in 

accordance with applicable regulations and laws in Indonesia. The methodology applied in this research is Extreme 

Programming (XP), which involves phases of planning, design, coding, testing, and listening. The developed virtual assistant 

demonstrated significant improvements in providing quick and accurate immigration information compared to traditional FAQ 

systems, enhancing user satisfaction and accessibility. 

Keywords: OpenAI Assistant; Directorate General of Immigration; Extreme Programming; Large Language Models; Retrieval 

Augmented Generation. 

  

1. INTRODUCTION  

In the current digital era, the interaction between humans and technology has become an integral part of daily 

life. Artificial Intelligence (AI) and Large Language Models (LLMs) have led to significant breakthroughs, 

particularly in the form of Virtual Assistants (VAs). These systems are designed to simulate human 

conversation, providing information and assistance to users in a natural, intuitive manner [1]. VAs have 

immense potential to revolutionize customer service across various sectors by automating responses and 

improving efficiency [2][3]. 

The Directorate General of Immigration (Ditjenim) of Indonesia is responsible for managing immigration 

policies, including travel documents like visas and residence permits. Currently, the public primarily interacts 

with Ditjenim through its official website or by visiting immigration offices. However, this system presents 

several challenges. The website's Frequently Asked Questions (FAQ) section is often inadequate, failing to 

provide comprehensive or easily navigable answers. This forces users to rely on human agents, who are only 

available during working hours and can be overwhelmed by the high volume of repetitive inquiries. These 

issues are common across many e-government services, often leading to long waiting times and a negative 

user experience[4][5][6]. Long waiting times and unresponsive systems are major pain points in customer 

service [7]. 

This research proposes the development of a web-based Virtual Assistant to serve as a primary information 

channel for Indonesian immigration services. By leveraging the OpenAI Assistant API, this VA can provide 

24/7 support, answering user queries accurately and consistently [8]. The system is grounded in a specific 

knowledge base, primarily Law No. 6 of 2011 on Immigration and official Ditjenim publications, ensuring the 

information provided is reliable and up-to-date [9]. The goal is to create a more efficient, accessible, and user-

friendly channel for immigration-related queries. 

mailto:shalahuddin.abdul21@students.unila.ac.id
mailto:rico.andrian@fmipa.unila.ac.id
mailto:muhaqiqin@fmipa.unila.ac.id
mailto:admi.syarif@fmipa.unila.ac.id


Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

121 

 

The application of VAs and chatbots in customer service and specialized domains has been explored 

extensively. Evaluations ChatGPT-4’s accuracy in dental diagnostics, highlights its potential but also the need 

for expert supervision due to inconsistencies [10]. In the context of customer service chatbots, the 

implementation of Mi- crosoft’s LUIS and QnA Maker, using a knowledge base for accurate responses and 

LLMs for natural interaction [11]. The OpenAI Assistant API, central to this work, allows for the creation of 

sophisticated VAs by integrating LLMs (like GPT-4o) with tools such as file search Retrieval Augmented 

Generation (RAG) and code interpreters [8]. The use of OpenAI Whisper for speech-to-text and text-to-speech 

further enhances accessibility [12][13]. 

The Extreme Programming (XP) methodology was chosen for this project due to its flexibility, iterative nature, 

and emphasis on user feedback [14]. This approach is well-suited for a project where requirements may evolve, 

allowing for rapid development cycles and continuous refinement of the system based on real user interactions. 

The goal of this research is to develop a VA that enhances the convenience, responsiveness, and 

trustworthiness of immigration information services, thereby improving overall public satisfaction. 

2. RESEARCH METHODOLOGY 

This study employed the Extreme Programming (XP) methodology, an agile framework that focuses on 

delivering software through iterative development cycles [15]. The XP process used in this research consisted 

of five main phases, which were repeated across several iterations: Planning, Design, Coding, Testing, and 

Listening. This cyclical approach allowed for continuous integration of feedback and incremental feature 

development. The overall research workflow is depicted in Figure 1. 

 

Figure 1. Extreme Programming (XP). 

2.1 Planning 

The planning phase involved identifying user needs and defining the project scope. User stories were created 

based on initial discussions with stakeholders to outline functional requirements. These stories guided the 

development priorities for each iteration. 

2.2 Design 

The design phase designs system architecture and user interface. Key artifacts included Use Case Diagrams, 

Entity-Relationship Diagrams (ERD) for the database schema, and low-fidelity prototypes for the UI/UX. The 

design focused on simplicity and functionality. 

2.3 Coding 

In this phase, the designs were translated into a functional application. The development stack included Next.js 

14 for its modern, server-side rendering capabilities [16][17]. Typescript is used instead of just Javascript to 

ensure code robustness and scalability [18]. MongoDB was used as the NoSQL database due to its flexible, 

document-based structure suitable for chat applications [19], and user authentication was managed with 

NextAuth.js, a secure framework for handling credentials and sessions [20]. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

122 

 

2.4 Testing 

Each feature was subjected to rigorous testing to ensure it met the acceptance criteria defined in the planning 

phase. Black-box testing was conducted to verify functionality from an end-user perspective without 

knowledge of the internal code. User surveys were distributed via Google Forms to gather quantitative 

feedback on usability and satisfaction. 

2.5 Listening (Feedback) 

This phase focused on gathering and analyzing qualitative feedback from end-users. This feedback was crucial 

for identifying issues, understanding user pain points, and planning improvements for subsequent iterations. 

The project was executed over five development iterations, each building upon the last to deliver a more refined 

and feature-rich application. 

3. RESULTS AND DISCUSSION 

This section outlines the results of the development process, including the system architecture, the key features 

implemented in each iteration, and the final evaluation results. 

3.1 System Architecture 

The virtual assistant operates on a client-server architecture deployed on Vercel. As shown in Figure 2, the 

user interacts with the Next.js frontend. Authentication is handled by NextAuth.js, which verifies user 

credentials against the MongoDB database. Once authenticated, user prompts are sent to the backend, which 

securely calls the OpenAI Assistant API. The assistant, equipped with the immigration knowledge base, 

processes the prompt and generates a response. The chat history is stored in MongoDB, allowing for persistent 

conversations. 

 

Figure 2. System architecture diagram. 

3.2 Development Iterations and Features 

The application was developed incrementally across five iterations: 

3.2.1 Iteration 1 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

123 

 

The first iteration focused on establishing the foundational components. This included setting up user 

authentication (registration and login) with NextAuth.js and MongoDB, and implementing the basic chat 

interface [19] [20]. An initial integration with the OpenAI Assistant API was completed to enable fundamental 

conversational capabilities, leveraging the underlying GPT model as a powerful coding and response 

generation tool [8]. 

The schema in Figure 3 enforces strict validation rules to ensure data integrity and security, which is critical 

for the authentication system. It defines the essential user attributes: a required name with a maximum length, 

a password with a minimum length of eight characters for basic security, and an email field that is mandatory, 

unique, and automatically converted to lowercase to ensure consistency during lookups. This robust schema 

serves as the data backbone for the authentication features handled by NextAuth.js, ensuring that only valid 

and well-formed user data is persisted in the database. 

3.2.2 Iteration 2 

This crucial iteration involved grounding the VA's responses in factual data. A detailed system prompt was 

engineered to instruct the AI on its role, limitations, and response format. The primary knowledge base, 

including Law No. 6 of 2011 and official FAQs, was provided to the OpenAI Assistant using its file search 

import mongoose from 'mongoose'; 

const UserSchema = new mongoose.Schema({ 

  name: { type: String, required: [true, 'Please provide a name'], maxlength: [60, 'Name cannot be 

more than 60 characters'], 

  }, 

  email: { type: String, required: [true, 'Please provide an email'], unique: true, lowercase: true, 

    validate: { validator: function (v: string) { return /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(v); }, 

      message: 'Please enter a valid email', }, }, 

  password: { type: String, required: [true, 'Please provide a password'], minlength: [8, 'Password 

must be at least 8 characters long'], }, 

  createdAt: { type: Date, default: Date.now, }, }); 

export default mongoose.models.User || mongoose.model('User', UserSchema); 

Figure 3. User schema. 

> Anda adalah chatbot imigrasi Indonesia berbasis yang bertugas memberikan informasi akurat tentang layanan 

imigrasi. Anda dirancang untuk membantu warga negara Indonesia dan turis asing dengan pertanyaan umum: 

> * Cara membuat paspor untuk warga negara Indonesia. 

> * Proses pengajuan visa ke negara asing untuk warga Indonesia. 

> * Prosedur mendapatkan Visa on Arrival (VoA) untuk turis asing yang ingin berkunjung ke Indonesia. 

> **Aturan Penting**: 

> * Gunakan informasi yang terdapat dalam data yang telah disediakan kepada Anda sebagai sumber utama. Jangan 

menyimpulkan atau menambahkan informasi yang tidak tercantum. Berikan penjelasan yang ramah, rinci, dan jelas. 

> * Jangan menjawab pertanyaan di luar topik imigrasi. Jika pengguna bertanya tentang hal lain, dengan sopan 

arahkan mereka ke lembaga atau sumber informasi yang relevan. Tanggapi dengan sopan dan beri tahu bahwa Anda 

hanya dapat menjawab pertanyaan terkait layanan imigrasi. 

> * Jelaskan bahwa kebijakan imigrasi dapat berubah sewaktu-waktu, sehingga pengguna disarankan untuk selalu 

memeriksa informasi terkini dari sumber resmi seperti [www.imigrasi.go.id](https://www.imigrasi.go.id). 

> **Tugas Anda adalah memberikan informasi imigrasi sesuai dengan dokumen yang disediakan. Jangan 

memberikan informasi di luar cakupan dokumen atau imigrasi. 

> **Contoh Pertanyaan yang Diharapkan**: 

> * "Bagaimana cara membuat paspor baru untuk WNI?" 

> * "Dokumen apa saja yang dibutuhkan untuk mengajukan visa ke Jepang?" 

> * "Apa saja syarat Visa on Arrival untuk masuk ke Indonesia?" 

Figure 4. System prompt. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

124 

 

(RAG) capabilities. This technique is crucial for grounding the model's responses in factual data to improve 

accuracy and relevance in the context of specialized virtual assistants and for customer service chatbots [9][11]. 

Figure 4 shows detailed system prompt was engineered to define the virtual assistant's persona, operational 

boundaries, and response protocol. The prompt explicitly instructs the AI to act as an official Indonesian 

immigration chatbot, tasked with providing accurate information to both Indonesian citizens and foreign 

tourists on topics such as passport creation, visa applications, and Visa on Arrival (VoA) procedures. A critical 

aspect of the prompt is the strict instruction to ground all responses exclusively in the provided knowledge 

base (Law No. 6 of 2011 and official FAQs), thereby minimizing the risk of factual inaccuracies or 

"hallucinations." Furthermore, it establishes clear guardrails by directing the assistant to politely decline any 

queries outside the scope of immigration. Finally, the prompt defines a professional yet friendly tone, includes 

a disclaimer about the dynamic nature of immigration policies, and mandates a standardized greeting, ensuring 

a consistent and responsible user experience. 

3.2.3 Iteration 3 

To enhance user experience, a chat history feature was implemented. Schemas for thread and message were 

created in MongoDB, taking advantage of its flexible document model which, is well-suited for the JSON-like 

structure of conversational data [19]. This allows users to review past interactions and resume previous 

conversations. 

 

 

 

 

 

 

 

 

Figure 5 and Figure 6 implements the chat history feature, a relational data model was designed using two 

distinct MongoDB schemas: Thread and Message. The ThreadSchema serves as the primary container for a 

single conversation, establishing ownership by linking to a specific userId and holding an array of references 

to all associated messages. The MessageSchema represents each individual utterance within a thread, storing 

the text content and a crucial role property (user or assistant) to distinguish the speaker. This one-to-many 

import mongoose, { Schema } from 'mongoose'; 

export enum MessageRole { 

  User = 'user', Assistant = 'assistant', } 

const MessageSchema: Schema = new Schema( 

  { id: { type: String, required: true, unique: true }, 

    role: { type: String, enum: MessageRole, required: true }, 

    content: { type: String, required: true }, 

    thread: { type: mongoose.Schema.Types.ObjectId, ref: 'Thread', }, 

  }, 

  { timestamps: true } 

); 

export default mongoose.models.Message || mongoose.model('Message', MessageSchema); 

Figure 5. Message schema. 

import mongoose, { Schema } from 'mongoose'; 

const ThreadSchema: Schema = new Schema( 

  { threadId: { type: String, required: true }, 

    userId: { type: mongoose.Schema.Types.ObjectId, ref: 'User', required: true, }, 

    messages: [ { type: mongoose.Schema.Types.ObjectId, ref: 'Message', }, ], }, 

  { timestamps: true, } 

); 

ThreadSchema.index({ userId: 1 }); 

export default mongoose.models.Thread || mongoose.model('Thread', ThreadSchema); 

Figure 6. Thread schema. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

125 

 

structure, where each message references its parent thread, creates a robust and efficient system for storing and 

retrieving entire conversational histories, ensuring a persistent and seamless user experience. 

3.2.4 Iteration 4 

This iteration introduced speech capabilities. Speech-to-text was implemented using the browser's Web Speech 

API, allowing users to speak their questions. Text-to-speech was added using the OpenAI Whisper API to 

voice the assistant's responses, making the interaction more natural and accessible [13]. This aligns with the 

vision for creating speech-enabled environments which corelates with the persuasive influence of the voice 

modality in virtual assistants [12][21]. 

Figure 7 shows the logic that runs the WebSpeech component. The component's logic is built around the 

browser's native Web Speech API. Upon mounting, a useEffect hook initializes a SpeechRecognition instance, 

first checking for browser compatibility to ensure graceful degradation. The instance is configured for the 

Indonesian language (id-ID) and set to provide continuous, interim results, which is essential for the real-time 

transcript display. The component's behavior is event-driven: the on-result event handler captures speech and 

updates the transcript state, while the on-error and on-end handlers manage errors and the recording lifecycle. 

 

 

3.2.5 Iteration 5 

Based on feedback from the Listening phase—a core tenet of the Extreme Programming methodology as—

this final iteration addressed usability issues, particularly on mobile devices [14]. The UI was made fully 

responsive, with a collapsible sidebar and improved layout for smaller screens to ensure a consistent experience 

across all devices. 

const WebSpeech: React.FC<WebSpeechProps> = ({ onTranscript }) => { 

  const [isListening, setIsListening] = useState(false);  const [transcript, setTranscript] = useState(''); 

  const [error, setError] = useState<string | null>(null); 

  useEffect(() => {let recognition: SpeechRecognition | null = null; 

    if ('webkitSpeechRecognition' in window) { 

      recognition = new ( window as any ).webkitSpeechRecognition() as SpeechRecognition; 

      recognition.lang = 'id-ID'; recognition.continuous = true; recognition.interimResults = true; 

      recognition.onresult = (event: SpeechRecognitionEvent) => { 

        const current = event.resultIndex; const transcriptText = event.results[current][0].transcript; 

        setTranscript(transcriptText); }; 

      recognition.onerror = (event: SpeechRecognitionErrorEvent) => { 

        setError(`Speech recognition error: ${event.error}`); }; 

      recognition.onend = () => { setIsListening(false);}; 

      (window as any).recognition = recognition; 

    } else { setError('Your browser does not support speech recognition.'); } 

    return () => { if (recognition) recognition.stop(); };  }, []); 

  const toggleListening = (isSend: boolean) => { 

    const recognition = (window as any).recognition as | SpeechRecognition | undefined; 

    if (recognition) { 

      if (isListening) { recognition.stop(); 

      } else { setTranscript(''); recognition.start(); 

      } setIsListening(!isListening); 

    } if (isSend) handleSubmit(); 

  };  const handleSubmit = () => { onTranscript(transcript); setTranscript(''); };}; 

Figure 7. WebSpeech logic. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

126 

 

 

Figure 9. Header component. 

The Header component in Figure 9 serves as the dynamic title bar for the chat interface, providing users with 

contextual information about the current conversation. It conditionally displays either a default prompt for new 

chats or the creation timestamp for an active thread. Crucially, it also integrates the SidebarTrigger component, 

which provides a control for users to toggle the visibility of the chat history sidebar—a key feature for ensuring 

a responsive layout on smaller screens. 

3.3 Evaluation Results 

To evaluate the effectiveness of the virtual assistant, a comparative analysis was conducted against the 

traditional method of finding information on the Ditjenim FAQ page. This approach aligns with studies 

evaluating other e-government chatbots, which also measure improvements in efficiency and user satisfaction 

against legacy systems [6]. Eleven end-users were asked to find answers to five common immigration 

questions using both methods.  

 

Figure 10. FAQ and internet response time. 

0%

20%

40%

60%

80%

100%

Question 1 Question 2 Question 3 Question 4 Question 5

FAQ and Internet

<1 Minute 1-3 Minutes 3-10 Minutes >10 Minutes

const Header = ({ threadId, timestamp }: Props) => { 

  const { currentThreadId } = useThread(); 

  return ( 

    <header className="flex justify-between bg-gray-700 rounded-md m-4 p-4"> 

      {!currentThreadId ? ( <p>{threadId ? threadId : 'Start by asking a question!'}</p>  ) : ( 

        <p>Thread Created On: {formatTimestamp(timestamp)}</p> 

      )} <SidebarTrigger /> 

    </header> 

  ); 

}; 

export default Header; 

Figure 8. Header component code. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

127 

 

 

Figure 11. VA response time. 

The results, visualized in Figure 10 and Figure 11, show a dramatic improvement in efficiency, a finding that 

is consistent with the demonstrated performance of other NLP-powered government assistants [6]. With the 

VA, most users found answers in under three minutes. In contrast, searching the FAQ page took the majority 

of users over ten minutes, with many expressing frustrations. 

Table 1. Qualitative comparison of information retrieval methods. 

Aspect 
Before VA 

(Using FAQ and Internet) 

After VA 

(Using VA) 

Speed & 

Context 

Slow; requires reading long texts and 

manually synthesizing information. 

Fast and conversational; provides direct 

answers, saving users from reading extensive 

documents. 

Convenience Requires active searching via a search 

engine or navigating a complex site. 

Easily accessible as a dedicated tool on the 

immigration website or app. 

Availability Information is online 24/7, but finding 

the correct, up-to-date document is 

difficult. 

The VA is available 24/7 and provides curated, 

reliable information instantly. 

Quality & 

Consistency 

Information on the internet can be 

outdated, inaccurate, or unofficial. 

Responses are sourced from a controlled, 

official knowledge base, ensuring quality and 

consistency. 

The evaluation demonstrates that the developed Virtual Assistant successfully addresses the shortcomings of the 

existing system. The qualitative comparison in The results, visualized in Figure 10 and Figure 11, show a dramatic 

improvement in efficiency, a finding that is consistent with the demonstrated performance of other NLP-powered 

government assistants [6]. With the VA, most users found answers in under three minutes. In contrast, searching 

the FAQ page took the majority of users over ten minutes, with many expressing frustrations. 

Table 1 highlights these improvements across several key aspects. In terms of Speed and Convenience, the VA 

provides direct, conversational answers, saving users from the effort of navigating complex websites and manually 
synthesizing information. Regarding Quality and Consistency, the VA ensures that responses are reliable and 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Question 1 Question 2 Question 3 Question 4 Question 5

Virtual Assistant

<1 Minute 1-3 Minutes 3-10 Minutes >10 Minutes



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

128 

 

consistent by drawing from an official, controlled knowledge base, a significant advantage over potentially outdated 

or inaccurate information found on the wider internet. This provides a faster, more convenient, and more reliable 

channel for the public to access immigration information. 

4. CONCLUSIONS 

This study successfully developed a web-based Virtual Assistant for Indonesian immigration services using 

the Extreme Programming methodology and the OpenAI Assistant API. The research demonstrates that such 

a system can significantly enhance public service quality by providing an efficient, accessible, and reliable 

information channel. The iterative XP approach proved effective, allowing for the incremental addition of 

complex features like a grounded knowledge base and multimodal interaction while continuously 

incorporating user feedback. The final evaluation confirmed that the VA drastically reduces the time and effort 

required for users to obtain accurate immigration information compared to traditional methods. The high user 

satisfaction ratings underscore its potential as a valuable tool for Ditjenim. 

For future work, it is recommended to explore the use of open-source, on-premise LLMs to ensure full data 

privacy and variety of options with LLMs fine-tuned specifically for RAG pipeline. Additionally, 

implementing a more advanced, manually configured RAG pipeline using frameworks like LangChain or 

Haystack could offer greater control and flexibility over the knowledge retrieval process.  

LITERATURE 

[1] D. Bernard and A. Arnold, “Cognitive interaction with virtual assistants: From philosophical 

foundations to illustrative examples in aeronautics,” Comput Ind, vol. 107, pp. 33–49, May 2019, doi: 

10.1016/j.compind.2019.01.010. 

[2] E. al. Audi Albtoush, “ChatGPT: Revolutionizing User Interactions with Advanced Natural Language 

Processing,” International Journal on Recent and Innovation Trends in Computing and 

Communication, vol. 11, no. 9, pp. 3354–3360, Nov. 2023, doi: 10.17762/ijritcc.v11i9.9541. 

[3] J. Trivedi, “Examining the Customer Experience of Using Banking Chatbots and Its Impact on Brand 

Love: The Moderating Role of Perceived Risk,” Journal of Internet Commerce, vol. 18, no. 1, pp. 91–

111, Jan. 2019, doi: 10.1080/15332861.2019.1567188. 

[4] Y. Zhao, T. Zhang, Y. Liu, Y. Zhu, and Y. Gao, “Research on the Influence Mechanism of Artificial 

Intelligence(AI) Customer Service on User Satisfaction with Online Shopping,” in 2021 2nd 

International Conference on Computer Science and Management Technology (ICCSMT), IEEE, Nov. 

2021, pp. 253–260. doi: 10.1109/ICCSMT54525.2021.00056. 

[5] P. D. A. Mahendra, K. A. S. Wijaya, and I. K. Winaya, “Optimalisasi Layanan M-Paspor Dari Sudut 

Pandang Responsiveness dan Reliability di Kantor Imigrasi Denpasar,” Sawala : Jurnal Administrasi 

Negara, vol. 12, no. 1, pp. 229–239, Jun. 2024, doi: 10.30656/SAWALA.V12I1.8133. 

[6] M. M. Siahaan, R. A. Sunarjo, R. Sebastian, and S. M. Wahid, “The Role of Natural Language 

Processing in Enhancing Chatbot Effectiveness for E-Government Services,” Journal of Computer 

Science and Technology Application, vol. 2, no. 1, pp. 65–74, Mar. 2025, doi: 10.33050/754QC238. 

[7] Y. Xu, C.-H. Shieh, P. van Esch, and I.-L. Ling, “AI Customer Service: Task Complexity, Problem-

Solving Ability, and Usage Intention,” Australasian Marketing Journal, vol. 28, no. 4, pp. 189–199, 

Nov. 2020, doi: 10.1016/j.ausmj.2020.03.005. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

129 

 

[8] L. Moussiades and G. Zografos, “OpenAi’s GPT4 as coding assistant,” Sep. 2023, Accessed: Oct. 30, 

2024. [Online]. Available: https://arxiv.org/abs/2309.12732v1 

[9] C. Wibhowo and R. Sanjaya, “Virtual Assistant to Suicide Prevention in Individuals with Borderline 

Personality Disorder,” in 2021 International Conference on Computer & Information Sciences 

(ICCOINS), IEEE, Jul. 2021, pp. 234–237. doi: 10.1109/ICCOINS49721.2021.9497160. 

[10] A. Suárez, J. Jiménez, M. Llorente de Pedro, C. Andreu-Vázquez, V. Díaz-Flores García, M. Gómez 

Sánchez, and Y. Freire, “Beyond the Scalpel: Assessing ChatGPT’s potential as an auxiliary intelligent 

virtual assistant in oral surgery,” Comput Struct Biotechnol J, vol. 24, pp. 46–52, Dec. 2024, doi: 

10.1016/j.csbj.2023.11.058. 

[11] C.-C. Chang, W.-S. Cheng, and S. Hsiao, “Customer Service Chatbot Enhanced with Conversational 

Language Understanding and Knowledge Base,” in 2022 IEEE 4th Eurasia Conference on IOT, 

Communication and Engineering (ECICE), IEEE, Oct. 2022, pp. 231–234. doi: 

10.1109/ECICE55674.2022.10042940. 

[12] G. Iannizzotto, L. Lo Bello, A. Nucita, and G. M. Grasso, “A vision and speech enabled, customizable, 

virtual assistant for smart environments,” Proceedings - 2018 11th International Conference on Human 

System Interaction, HSI 2018, pp. 50–56, Aug. 2018, doi: 10.1109/HSI.2018.8431232. 

[13] C. Ischen, T. B. Araujo, H. A. M. Voorveld, G. Van Noort, and E. G. Smit, “Is voice really persuasive? 

The influence of modality in virtual assistant interactions and two alternative explanations,” Internet 

Research, vol. 32, no. 7, pp. 402–425, Dec. 2022, doi: 10.1108/INTR-03-2022-0160. 

[14] R. Juric, “Extreme programming and its development practices,” in ITI 2000. Proceedings of the 22nd 

International Conference on Information Technology Interfaces (Cat. No.00EX411), 2000, pp. 97–104. 

[15] S. Krishna and K. Tadikonda, “Corresponding author: Satya Krishna Kapil Tadikonda Bridging 

disciplines: Cross-functional collaboration frameworks in modern AI Development,” World Journal of 

Advanced Engineering Technology and Sciences, vol. 2025, no. 01, pp. 203–210, 2025, doi: 

10.30574/wjaets.2025.15.1.0211. 

[16] M. Thakkar, “Building React Apps with Server-Side Rendering: Use React, Redux, and Next to Build 

Full Server-Side Rendering Applications,” Building React Apps with Server-Side Rendering: Use 

React, Redux, and Next to Build Full Server-Side Rendering Applications, pp. 1–192, Jan. 2020, doi: 

10.1007/978-1-4842-5869-9. 

[17] H. H. Ben kora and M. S. Manita, “Modern Front-End Web Architecture Using React.js and Next.js,” 

University of Zawia Journal of Engineering Sciences and Technology, vol. 2, no. 1, pp. 1–13, Aug. 

2024, doi: 10.26629/uzjest.2024.01. 

[18] J. Scarsbrook, M. Utting, and R. Ko, “TypeScript’s Evolution: An Analysis of Feature Adoption Over 

Time,” Oct. 2023. doi: 10.48550/arXiv.2303.09802. 

[19] R. Byali, Ms. Jyothi, and M. C. Shekadar, “"Evaluation of NoSQL Database MongoDB with Respect 

to JSON Format Data Representation ",” International Journal of Research Publication and Reviews, 

pp. 867–871, Sep. 2022, doi: 10.55248/gengpi.2022.3.9.24. 

[20] A. Ezugwu, E. Ukwandu, C. Ugwu, M. Ezema, C. Olebara, J. Ndunagu, L. Ofusori, and U. Ome, 

“Password-based authentication and the experiences of end users,” Sci Afr, vol. 21, p. e01743, Sep. 

2023, doi: 10.1016/J.SCIAF.2023.E01743. 



Vol. 6 No. 2, 2025, pp. 120-130   Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.272  

130 

 

[21] W. Wei, S. Li, S. Okada, and K. Komatani, “Multimodal User Satisfaction Recognition for Non-task 

Oriented Dialogue Systems,” in Proceedings of the 2021 International Conference on Multimodal 

Interaction, New York, NY, USA: ACM, Oct. 2021, pp. 586–594. doi: 10.1145/3462244.3479928. 

  


