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Abstract - Customer churn is a critical issue in the banking industry, as retaining existing customers is more cost-effective 

than acquiring new ones. High churn rates can negatively affect profitability and long-term business sustainability, 

making churn prediction a key focus in customer relationship management. With the rise of digital banking and the 

availability of large-scale customer data, machine learning techniques have become valuable tools for identifying at-risk 

customers. In particular, gradient boosting algorithms have shown promising results in classification tasks involving 

structured data. This study compares the performance of three ensemble machine learning models XGBoost, LightGBM, 

and CatBoost in classifying churn using a publicly available banking customer dataset consisting of 10,127 records and 

23 features. The evaluation is conducted using two data-splitting schemes (80:10:10 and 70:15:15), and four performance 

metrics: accuracy, precision, recall, and F1-score. The results indicate that XGBoost achieved the highest overall 

performance (98.3% accuracy in split 1 and 96.4% in split 2). LightGBM demonstrated competitive accuracy with 

significantly faster training time, while CatBoost offered strong predictive capability but required longer computation. 

These findings suggest that model selection in churn prediction depends on the trade-off between predictive performance 

and computational efficiency.  
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1. INTRODUCTION 

In highly competitive business environment, retaining existing customers is far more cost‑effective than 

acquiring new ones, as loyal customers not only provide recurring revenue but also act as brand advocates 

through word‑of‑mouth [1][2]. In the banking sector, customer churn when clients close accounts or cease 

using services can severely impact both revenue and institutional reputation [3]. High churn rates often point 

to underlying issues such as suboptimal service quality, inefficient processes, or a lack of competitive product 

offerings [4][5]. Consequently, banks must understand and manage churn to maintain service excellence and 

customer satisfaction [6]. 

In today’s digital and data-driven era, the vast availability of customer data has made churn analysis 

increasingly important for modern businesses [7]. Customer churn is now recognized as a key factor affecting 

company profitability, especially amid rapid technological advancement and evolving business models [3]. 

The primary goal of churn analysis is to identify customers with a high risk of leaving the organization [8]. In 

the banking sector, while customer attrition is inevitable, machine learning has become essential for predicting 

churn using demographic and financial data to support retention strategies [6]. Nonetheless, challenges such 

as class imbalance and overfitting continue to hinder the effectiveness of machine learning models in churn 

prediction [9]. 

XGBoost (Extreme Gradient Boosting) is a machine learning algorithm developed by Dr. Tianqi Chen from 

the University of Washington in 2014 as an advancement of traditional gradient boosting methods [10]. It is 

known for its high predictive accuracy, interpretability, and flexibility in classification tasks [11]. XGBoost 

employs the Gradient Boosting Decision Tree (GBDT) technique, which combines multiple weak learners 

typically decision trees into a strong ensemble model [12]. During training, it updates model weights 
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incrementally based on the gradient of the loss function to improve performance. A key feature is its level-

wise tree growth strategy, which, while computationally intensive, enhances model stability and accuracy [13]. 

LightGBM is a gradient boosting framework developed by Microsoft in C++ that is widely used for building 

efficient and accurate machine learning models [14]. It uses a histogram-based algorithm that discretizes 

continuous values into bins, improving training speed and reducing memory usage. LightGBM supports two 

tree growth strategies: level-wise and leaf-wise. While level-wise growth enables multithreading, it may 

introduce redundant splits; the leaf-wise strategy focuses on the highest gain but requires depth limitation to 

prevent overfitting [15]. With this architecture, LightGBM offers superior computational efficiency, strong 

predictive performance, and the ability to scale to large datasets, outperforming many other boosting 

algorithms [16]. 

CatBoost is a gradient boosting model introduced by Yandex engineers in 2017 that excels in handling 

categorical features without the need for explicit preprocessing or normalization [17]. It captures feature 

interactions and uses gradient boosting to reduce noise, bias, and prediction errors [18]. A key characteristic is 

its use of oblivious decision trees, which enforce symmetric structure at each depth level as a form of 

regularization. This setup improves consistency and allows uncertainty estimation in predictions, similar to 

Gaussian Processes [19]. CatBoost also applies ordered boosting to avoid target leakage, computing 

transformation values only from previously seen data while iteratively adjusting predictions based on data 

distribution [20]. 

 

2. RESEARCH METHODOLOGY 

This research aims to compare the performance of three machine learning models XGBoost, LightGBM, and 

CatBoost in predicting customer churn using a publicly available banking dataset. These models were selected 

due to their proven effectiveness in handling structured data and their widespread use in classification tasks. 

The objective is to evaluate which model provides the most accurate and efficient results in churn prediction. 

The methodology consists of several stages, including data acquisition, exploratory data analysis, 

preprocessing, data splitting, model development, and performance evaluation. 

2.1. Data Acquisition 

The dataset used in this study is the Credit Card Customers dataset obtained from Kaggle, originally provided 

by Sakshi Goyal. It contains 10,127 records and 23 features that represent various aspects of customer 

information. These features include demographic attributes such as age, income, and gender, as well as 

behavioral attributes like transaction counts and card type. The target label, Attrition_Flag, indicates whether 

a customer has churned or remained active. 

2.1. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) was carried out to gain an initial and comprehensive understanding of the 

dataset’s structure, data quality, and feature characteristics before proceeding to the modeling stage. This step 

is essential to uncover underlying patterns, detect anomalies, and ensure that the data is suitable for analysis. 

The process involved several key activities, such as checking for missing or inconsistent values, identifying 

potential outliers that could skew the results, and exploring the distribution of both categorical and numerical 

variables to understand their behavior and scale. Additionally, correlation analysis was conducted to examine 

the relationships between numerical features, which helps in detecting multicollinearity and guiding feature 

selection. These insights provided a solid foundation for making informed preprocessing decisions and 

selecting appropriate modeling techniques. 
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Figure 1. Class distribution of the target variable (Attrition_Flag). 

Figure 1 presents the distribution of the target variable, Attrition_Flag, highlighting a significant class 

imbalance within the dataset. A large majority of the instances (83.93%) are categorized as Existing Customer, 

while only 16.07% are labeled as Attrited Customer. This imbalance may lead to biased model performance, 

where the classifier tends to favor the majority class unless appropriate balancing techniques are applied during 

preprocessing. 

 

Figure 2. Boxplot of outliers in Months_on_book. 

Figure 2 shows a boxplot of the Months_on_book variable, which represents how long a customer has been 

with the bank. In the plot, the blue box in the center represents the interquartile range (IQR), which contains 

the middle 50% of the data. The line inside the box indicates the median value of the variable. The whiskers 

extending from the box show the range of values within 1.5 times the IQR, while the small individual dots on 

either side represent outliers, or data points that fall significantly outside the typical range. These outliers are 

important to identify, as they may influence the performance of machine learning models if not handled 

appropriately during preprocessing. 
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Figure 3. Correlation heatmap. 

A correlation heatmap, as presented in Figure 3, illustrates the linear relationships among numerical features 

in the dataset. The color intensity represents the strength and direction of correlation between each pair of 

variables, where values closer to +1 or –1 indicate strong positive or negative relationships, respectively. This 

visualization is useful for identifying features that are strongly correlated with each other, which may lead to 

multicollinearity, as well as detecting variables that have a notable relationship with the target variable. 

2.3. Data Preprocessing 

The data preprocessing stage involved several essential steps to prepare the dataset for machine learning 

modeling. First, categorical columns were converted into numerical format because machine learning 

algorithms cannot process non-numeric data. Three columns were removed CLIENTNUM, which serves as a 

unique customer identifier and holds no predictive value, and two system-generated columns, 

Naive_Bayes_Classifier..._12_mon_1 and mon_2, which were deemed irrelevant for training. Rows 

containing unknown values in any categorical feature were also removed, resulting in a cleaned dataset with 

20 columns and 7,081 rows, including 5,968 non-churned and 1,113 churned customers. 

All numerical features were examined for the presence of outliers using the Interquartile Range (IQR) method, 

which identifies values that fall significantly outside the typical data spread. Instead of removing these outliers, 

normalization was applied using RobustScaler, a technique that scales data based on the IQR. This method is 

particularly suitable in the presence of outliers, as it is less sensitive to extreme values compared to standard 

normalization techniques. By doing so, the model is able to learn from the data without being skewed by 

unusually large or small values. To address class imbalance, a combined resampling approach was used, 

involving random undersampling to reduce the number of samples from the majority class and ADASYN 

(Adaptive Synthetic Sampling) to synthetically generate new instances for the minority class. This strategy 

allows the model to learn more effectively from both classes without being biased toward the dominant group. 
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2.4. Data Splitting 

To evaluate the models under varying training proportions, the dataset was divided into three subsets: training, 

validation, and testing. The training set was used to build the models, The validation set was used to fine-tune 

hyperparameters and prevent overfitting, and the testing set to assess final performance on unseen data. This 

separation ensures that the evaluation process reflects the model's generalization capability. Table 1 presents 

the two data-splitting scenarios implemented in this study. These scenarios were designed to examine whether 

changes in data allocation impact model behavior and evaluation outcomes. 

Table 1. Dataset splitting scenarios. 

Scenario Training Set (%) Validation Set (%) Testing Set (%) 

1 80 10 10 

2 70 15 15 

2.5. Model Training 

Three machine learning models XGBoost, LightGBM, and CatBoost were implemented to perform the churn 

classification task in this study. The development process for each model followed the same structure, 

including data preprocessing, hyperparameter tuning, and evaluation. To ensure a fair comparison, each model 

was trained using identical training data, features, and validation strategy. The evaluation was conducted under 

two different data-splitting scenarios to observe how varying data proportions affected model performance. 

Hyperparameter tuning was carried out using GridSearchCV, which exhaustively explores predefined 

parameter combinations based on validation set scores. In this study, a total of 256 candidate parameter 

combinations were tested for each model. With 5-fold Stratified Cross-Validation, this resulted in 1,280 fitting 

processes per model, ensuring a robust and comprehensive search for optimal parameters. This setup was 

chosen to maintain balanced class distribution across folds and to enhance the reliability and generalizability 

of the evaluation process. 

2.5. Model Evaluation 

The performance of each model was evaluated using four commonly used classification metrics: Accuracy, 

Precision, Recall, and F1-Score. These metrics were calculated using the weighted average to account for the 

class imbalance in the target variable. To assess the consistency and robustness of each model, evaluations 

were conducted under two different data-splitting scenarios as previously described. The results for each model 

under both scenarios are summarized in the following tables. 

Table 2. Evaluation metrics of XGBoost under Scenario 1 and 2. 

Scenario Precision Recall F1-Score Accuracy 

1 0.98 0.98 0.98 0.983 

2 0.96 0.96 0.96 0.964 

Table 3. Evaluation metrics of LightGBM under Scenario 1 and 2. 

Scenario Precision Recall F1-Score Accuracy 

1 0.98 0.98 0.98 0.983 

2 0.96 0.96 0.96 0.964 

Table 4. Evaluation metrics of CatBoost under Scenario 1 and 2. 

Scenario Precision Recall F1-Score Accuracy 

1 0.98 0.98 0.98 0.983 

2 0.96 0.96 0.96 0.964 
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As shown in Table 2, Table 3, and Table 4, the evaluation metrics for XGBoost, LightGBM, and CatBoost 

respectively were computed under two different data-splitting scenarios. These metrics include precision, 

recall, and F1-score, which provide a more balanced view of model performance, especially in imbalanced 

classification tasks such as churn prediction. The inclusion of multiple metrics ensures that the models are not 

only accurate in general but also capable of correctly identifying both classes, which is critical in this context. 

These results serve as the basis for comparative analysis in the following chapter. 

 

3. RESULTS AND DISCUSSION 

This section discusses the experimental results based on the performance of the machine learning models used 

in this study. The analysis focuses on evaluating and comparing the predictive capabilities of XGBoost, 

LightGBM, and CatBoost under different data-splitting scenarios. In addition, differences in training time due 

to hyperparameter tuning are also highlighted to provide insight into the computational efficiency of each 

model. 

3.1. Comparative Evaluation under 80:10:10 Splitting 

The performance of XGBoost, LightGBM, and CatBoost was evaluated using the first data-splitting scheme, 

where 80% of the dataset was used for training, 10% for validation, and 10% for testing. The comparison 

focuses on four evaluation metrics: accuracy, precision, recall, and F1-score. The results for each model under 

this scenario are presented in the following table. 

Table 5. Evaluation metrics of each model (80:10:10 split). 

Model Precision Recall F1-Score Accuracy 

XGBoost 0.98 0.98 0.98 0.983 

LightGBM 0.98 0.98 0.98 0.981 

CatBoost 0.97 0.97 0.97 0.971 

Based on the evaluation results shown in Table 5, all three models demonstrate strong predictive performance 

across all four metrics. XGBoost achieves the highest accuracy at 0.983, followed closely by LightGBM with 

0.981, while CatBoost records a slightly lower accuracy of 0.971. Although XGBoost and LightGBM show 

identical values in precision, recall, and F1-score (0.98 each), XGBoost yields a slightly higher overall 

accuracy. This indicates that XGBoost was able to correctly classify a marginally greater number of instances 

compared to LightGBM, even though their per-class performance remains similar. CatBoost, while still 

performing well, trails slightly behind both models across all metrics under this splitting scheme. 

 

Figure 4. XGBoost learning curve scenario 1 (80:10:10 split). 
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Figure 4 below illustrates the learning curve of the XGBoost model under Scenario 1 (80:10:10 data split), 

where it achieved the highest accuracy among all models, with a score of 0.983. The graph demonstrates a 

steady decrease in both training and validation log loss across boosting rounds, indicating effective learning 

throughout the training process. Furthermore, the small gap between the two curves suggests good 

generalization performance on unseen data, with no indication of overfitting. 

3.2. Comparative Evaluation under 70:15:15 Splitting 

To further evaluate the stability of each model’s performance, a second data-splitting scheme was applied, 

using 70% of the dataset for training, 15% for validation, and 15% for testing. The evaluation metrics used 

remain the same as in the previous scenario. The results obtained from this configuration are presented in the 

following Table 6. 

Table 6. Evaluation metrics of each model (70:15:15 split). 

Model Precision Recall F1-Score Accuracy 

XGBoost 0.96 0.96 0.96 0.964 

LightGBM 0.96 0.95 0.96 0.953 

CatBoost 0.96 0.96 0.96 0.964 

As shown in Table 6, all three models experience a slight decline in performance compared to the previous 

scenario, which is expected due to the reduction in training data. XGBoost and CatBoost both achieve the 

highest accuracy at 0.964, while LightGBM records a slightly lower accuracy of 0.953. Although all models 

maintain consistent scores across precision, recall, and F1-score, the drop in LightGBM’s recall to 0.95 may 

have contributed to its slightly lower overall accuracy. In contrast, CatBoost shows a relatively stable 

performance across all metrics and matches XGBoost in this scenario, suggesting improved robustness when 

trained on a smaller dataset. 

In addition to the evaluation metrics presented in Table 6, the learning curve of the XGBoost model under 

Scenario 2 is shown in Figure 5 below. In this configuration, XGBoost achieved the highest accuracy (0.964), 

equal to CatBoost, making it one of the best-performing models under reduced training data. The graph 

demonstrates a smooth and consistent reduction in log loss on both training and validation sets, indicating that 

the model continues to learn effectively even with less data. The close alignment between the two curves also 

suggests that the model maintains good generalization performance and is not overfitting. 

 

Figure 5. XGBoost learning curve scenario 2 (70:15:15 split). 
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3.3. Training Time and Efficiency 

Beyond accuracy and classification metrics, training time is an essential consideration when evaluating 

machine learning models, particularly in practical applications where computational resources and time 

constraints are critical. In this study, hyperparameter tuning was performed using GridSearchCV, which 

evaluated 256 combinations of candidate parameters for each model. With the use of 5-fold cross-validation, 

this process resulted in a total of 1,280 fitting iterations per model. The training time required to complete this 

tuning process varied between models and is summarized in the following Table 7. 

Table 7.  Tuning time of each model. 

Model Tuning Time (Seconds) Scheme 1 Tuning Time (Seconds) Scheme 2 

XGBoost 291.33 377.20 

LightGBM 173.86 182.81 

CatBoost 664.08 617.52 

As shown in Table 7, the tuning time for each model differs significantly. LightGBM consistently required the 

least amount of time to complete the hyperparameter search in both splitting schemes, reflecting its efficient 

training mechanism. XGBoost took moderately more time, while CatBoost required the longest tuning duration 

among the three models. 

The increase in training time from Scheme 1 to Scheme 2 is observed in both XGBoost and LightGBM, which 

may be attributed to the larger validation and test sets in the second scheme. In contrast, CatBoost recorded 

slightly shorter tuning time in Scheme 2, though it remains the most time-consuming overall. These results 

highlight the trade-off between predictive performance and computational cost when selecting a model for 

deployment. 

3.4. Overview of Model Evaluation 

The evaluation of XGBoost, LightGBM, and CatBoost across both data-splitting schemes (80:10:10 and 

70:15:15) showed that all three models performed consistently in predicting customer churn. Each model 

achieved high values across all evaluation metrics, demonstrating their capability to manage class imbalance 

and deliver reliable classification outcomes. However, closer analysis reveals meaningful differences in 

performance patterns and computational efficiency. 

XGBoost produced the highest accuracy scores in both scenarios (0.983 and 0.964), supported by stable 

learning curves and low log loss throughout training and validation. This indicates strong learning behavior 

and minimal risk of overfitting. LightGBM, while achieving slightly lower accuracy, showed the fastest 

training times in both schemes. This efficiency may be advantageous in time-sensitive or resource-constrained 

environments. Meanwhile, CatBoost maintained stable precision, recall, and F1-scores across both scenarios, 

with accuracy identical to XGBoost under Scenario 2. Although it required the longest tuning time, CatBoost’s 

performance suggests resilience when trained on smaller data proportions. 

Overall, each model demonstrates distinct strengths XGBoost excels in accuracy and generalization, 

LightGBM in speed and efficiency, and CatBoost in stability across varying data conditions. These 

characteristics reflect the unique design philosophies behind each algorithm. These distinctions are essential 

for practitioners who must choose models based not only on accuracy, but also on training efficiency and 

robustness in real-world applications. 

4. CONCLUSIONS 

This study evaluated and compared the performance of three gradient boosting models XGBoost, LightGBM, 

and CatBoost for predicting customer churn in the banking sector. The models were tested under two different 

data-splitting schemes to assess their consistency and robustness. The results showed that all three models 

achieved high predictive accuracy, with XGBoost consistently performing well across both scenarios. 
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LightGBM demonstrated competitive accuracy while offering the fastest training time, making it suitable when 

computational efficiency is prioritized. CatBoost provided stable performance but required significantly more 

training time, especially during hyperparameter tuning. These findings highlight the importance of balancing 

predictive performance and computational cost when selecting machine learning models for churn prediction. 

Future research could explore additional feature engineering techniques, alternative resampling methods, or 

real-time implementation strategies to further enhance model effectiveness in practical.  

LITERATURE 

[1] B. Artha, I. Zahara, B. Bahri, and N. Sari, “Customer Retention: A Literature Review,” Soc. Sci. Stud., 

vol. 2, pp. 30–45, Jan. 2022, doi: 10.47153/sss21.2952022. 

[2] B. Prabadevi, R. Shalini, and B. R. Kavitha, “Customer churning analysis using machine learning 

algorithms,” Int. J. Intell. Networks, vol. 4, pp. 145–154, 2023, doi: 

https://doi.org/10.1016/j.ijin.2023.05.005. 

[3] P. P. Singh, F. I. Anik, R. Senapati, A. Sinha, N. Sakib, and E. Hossain, “Investigating customer churn 

in banking: a machine learning approach and visualization app for data science and management,” Data 

Sci. Manag., vol. 7, no. 1, pp. 7–16, 2024, doi: https://doi.org/10.1016/j.dsm.2023.09.002. 

[4] H. A. Triyafebrianda and N. A. Windasari, “Factors Influence Customer Churn on Internet Service 

Providers in Indonesia,” TIJAB (The Int. J. Appl. Business), vol. 6, no. 2, pp. 134–144, 2022. 

[5] J. Lappeman, M. Franco, V. Warner, and L. Sierra-Rubia, “What social media sentiment tells us about 

why customers churn,” J. Consum. Mark., vol. 39, no. 5, pp. 385–403, 2022. 

[6] S. Akakpo, P. Dambra, R. Paz, T. Smyth, F. Torre, and C. Yu, “Optimization of the K-Nearest Neighbor 

Algorithm to Predict Bank Churn,” Stat. Optim. Inf. Comput., vol. 12, no. 5, pp. 1397–1408, 2024. 

[7] X. Liu, G. Xia, X. Zhang, W. Ma, and C. Yu, “Customer churn prediction model based on hybrid neural 

networks,” Sci. Rep., vol. 14, no. 1, p. 30707, 2024. 

[8] S. K. Hegde, R. Hegde, S. S. Nanda, G. Phatak, P. Hongal, and D. Gowda, “Customer Churn Analysis 

in Financial Domain using Deep Intelligence Network,” in 2023 International Conference on 

Intelligent Data Communication Technologies and Internet of Things (IDCIoT), IEEE, 2023, pp. 362–

370. 

[9] S. A. Fayaz, S. Kaul, M. Zaman, and M. A. Butt, “An adaptive gradient boosting model for the 

prediction of rainfall using ID3 as a base estimator,” Rev. d’Intelligence Artif., vol. 36, no. 2, p. 241, 

2022. 

[10] S. E. H. Yulianti, O. Soesanto, and Y. Sukmawaty, “Penerapan Metode Extreme Gradient Boosting 

(XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., pp. 21–26, 2022. 

[11] Z. A. Ali, Z. H. Abduljabbar, H. A. Taher, A. B. Sallow, and S. M. Almufti, “Exploring the power of 

eXtreme gradient boosting algorithm in machine learning: A review,” Acad. J. Nawroz Univ., vol. 12, 

no. 2, pp. 320–334, 2023. 

[12] M. D. Maulana, A. I. Hadiana, and F. R. Umbara, “Algoritma Xgboost Untuk Klasifikasi Kualitas Air 

Minum,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3251–3256, 2023. 

[13] R. Sibindi, R. Mwangi, and A. Waititu, “A boosting ensemble learning based hybrid light gradient 

boosting machine and extreme gradient boosting model for predicting house prices,” Eng. Reports, vol. 

5, Nov. 2022, doi: 10.1002/eng2.12599. 

[14] M. Alyami, M. Khan, A. W. A. Hammad, H. Alabduljabbar, R. Nawaz, M. Fawad, and Y. Gamil, 

“Estimating compressive strength of concrete containing rice husk ash using interpretable machine 

learning-based models,” Case Stud. Constr. Mater., vol. 20, p. e02901, 2024. 

[15] H. Zeng, C. Yang, H. Zhang, Z. Wu, J. Zhang, G. Dai, F. Babiloni, and W. Kong, “A LightGBM-Based 

EEG Analysis Method for Driver Mental States Classification,” Comput. Intell. Neurosci., vol. 2019, 



Vol. 6 No. 2, 2025, pp. 178-187  Jurnal Pepadun 

© 2025 The Authors  |  doi: 10.23960/pepadun.v6i3.277 

187 

no. 1, p. 3761203, Jan. 2019, doi: https://doi.org/10.1155/2019/3761203. 

[16] T. O. Omotehinwa, D. O. Oyewola, and E. G. Moung, “Optimizing the light gradient-boosting machine 

algorithm for an efficient early detection of coronary heart disease,” Informatics Heal., vol. 1, no. 2, 

pp. 70–81, 2024, doi: https://doi.org/10.1016/j.infoh.2024.06.001. 

[17] J. Zheng, M. Hu, C. Wang, S. Wang, B. Han, and H. Wang, “Spatial patterns of residents’ daily activity 

space and its influencing factors based on the CatBoost model: A case study of Nanjing, China,” Front. 

Archit. Res., vol. 11, no. 6, pp. 1193–1204, 2022, doi: https://doi.org/10.1016/j.foar.2022.04.003. 

[18] X. Ren, H. Yu, X. Chen, Y. Tang, G. Wang, and X. Du, “Application of the CatBoost Model for Stirred 

Reactor State Monitoring Based on Vibration Signals,” C. - Comput. Model. Eng. Sci., vol. 140, no. 1, 

pp. 647–663, 2024, doi: https://doi.org/10.32604/cmes.2024.048782. 

[19] D. Boldini, F. Grisoni, D. Kuhn, L. Friedrich, and S. A. Sieber, “Practical guidelines for the use of 

gradient boosting for molecular property prediction,” J. Cheminform., vol. 15, no. 1, p. 73, 2023, doi: 

10.1186/s13321-023-00743-7. 

[20] Y. Chen, B. Chen, and A. Shayilan, “Combining categorical boosting and Shapley additive 

explanations for building an interpretable ensemble classifier for identifying mineralization-related 

geochemical anomalies,” Ore Geol. Rev., vol. 173, p. 106263, 2024, doi: 

https://doi.org/10.1016/j.oregeorev.2024.106263. 

 

 


