Implementasi Metode Deep Learning Untuk Klasifikasi Gambar Tulisan Tangan

Main Article Content

Edi Arif Effendi
Favorisen Rosyking Lumbanraja
Akmal Junaidi
Admi Syarif

Abstract

The advancement of current technology has led to the widespread utilization of pattern recognition in diverse fields, such as identifying signature patterns, fingerprints, faces, and handwriting. Human handwriting exhibits variations from one person to another, often making it challenging to read or recognize, which can hinder daily activities, particularly in transactions requiring handwritten input. Handwriting, being a distinct expression of individuals, can be effectively distinguished or recognized using pattern recognition methods, particularly through computer-based classification techniques, including deep learning. In this research, deep learning was employed for the classification of handwritten characters, encompassing a total of 5200 data samples, consisting of lowercase and uppercase letters from 'a' to 'z,' with each letter represented by 100 data samples. The data underwent several stages, including pre-processing, feature extraction, classification, and evaluation. The evaluation phase employed k-fold cross-validation repeated ten times, which is a statistical technique aimed at assessing classifier performance. The study revealed that the highest accuracy, at 58.36%, was achieved using a 2-layer architecture with 512 and 256 units, while the lowest accuracy, at 43.42%, was obtained with a 5-layer architecture comprising 512, 256, 128, 64, and 32 units.

Article Details

How to Cite
Effendi, E. A., Lumbanraja, F. R., Junaidi, A., & Syarif, A. (2023). Implementasi Metode Deep Learning Untuk Klasifikasi Gambar Tulisan Tangan. Jurnal Pepadun, 4(2), 100–106. https://doi.org/10.23960/pepadun.v4i2.166

References

R. Rosnelly, “Pengenalan Pola Angka Tulisan Tangan Pada Cek Menggunakan Neocognitron,” CSRID Journal., Vol. 10, No. 1, pp. 23-32, 2018.

T. Handhayani, “Identifikasi Penulis Melalui Pola Tulisan Tangan Menggunakan Algoritma Support Vactor Machine,” Jurnal Muara., Vol. 1, No. 1, pp. 210-217, 2017.

R.A. Misnadin, S.A.S. Mola, & A. Fanggidae, “Pengenalan Pola Tulisan Tangan Dengan Metode K-Nearest Neighbor,” J-ICON., Vol.2, No. 1, pp. 65-72, 2014.

C.Y. Sun, Y. Wakahara, & C. C. Tappert, “The state of the art in on-line handwritting recognition,” In IEEE Transaction on Pattern and Machine Intelligence, Vol.12, pp.787-808, 1990.

Y. LeCun, Y. Bengio, & G. Hinton, “Deep Learning,” Nature International Journal of Science. 521(7553), pp. 436-444, 2015.

R. Plamondon, & N. S. Sargur, “On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 22, No. 1, pp. 63, 2000.

K. P. Danukusumo, “Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Klasifikasi Citra Candi Berbasis GPU,” Yogyakarta: Fakultas Teknologi Industri Universitas Atma Jaya., Vol.3 No.2, 2017.

M. Ali. 15 Best OCR & Handwriting Datasets for Machine Learning [Online]. Available: https://gengo.ai/datasets/15-best-ocr-handwriting-datasets/, 2019.

P. Pitria, “Pengguna Twitter Pada Akun Resmi Samsung Indonesia Dengan Menggunakan Naive Bayes,” Jurnal Informatika, Bandung., Vol 7 No 2, 2015.

E. W. Agustinus, “Penerapan Metode Support Vector Machine pada Sistem Deteksi Intrusi secara Real-time,” IJCCS, Yogyakarta, Vol 8, No 1, 2014.

M. F.Fibrianda, & A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 3112–3123. Vol 2 No 1, 2019.