Implementasi YOLOv3 Menggunakan Fitur Ekstraktor ResNeXt Untuk Deteksi Filariasis
Main Article Content
Abstract
Filariasis is a serious infectious disease prevalent in many tropical and subtropical countries, including Indonesia, caused by infection from filarial worms transmitted through mosquito bites. The disease can lead to severe limb swelling (elephantiasis) and permanent disability if not treated promptly. Early detection of Filariasis is crucial in preventing the progression of serious illness, reducing transmission, and lowering long-term treatment costs. Vector control and mass treatment with antiparasitic drugs are the main prevention strategies, while recent research explores AI-based detection methods, such as Convolutional Neural Networks (CNN), Faster R-CNN, K-Nearest Neighbors (KNN), SSD, and YOLO, to improve diagnostic efficiency for Filariasis. This study aims to integrate YOLOv3 and ResNeXt algorithms into a Filariasis detection model, with the hope of producing a fast, accurate, and efficient approach to identifying this disease. As a result, AI technology has the potential to support efforts in eradicating Filariasis through more effective and accurate early detection. The implementation of the YOLOv3 algorithm with ResNeXt as a feature extractor in object detection processes demonstrated excellent performance, with an average accuracy of 96.77%. This indicates that the object detection model is reliable and suitable for use in systems requiring accurate object detection, particularly in various types of anomalies and medical images.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
J. G. Sumboh, N. A. Laryea, J. Otchere, C. S. Ahorlu, & D. K. de Souza, “Towards Understanding the Microepidemiology of Lymphatic Filariasis at the Community Level in Ghana”, TropicalMed, vol. 9, no. 5, 107, 2024, https://doi.org/10.3390/tropicalmed9050107
K. Tameemi & R. Kabakli, “Lymphatic Filariasis: An Overview”, Asian Journal of Pharmaceutical and Clinical Research, vol 12, no. 12, 2019, https://doi.org/10.22159/ajpcr.2019.v12i12.35646.
T. E. Newman, & A. L. Juergens, Filariasis dalam StatPearls [Internet], Treasure Island (FL): StatPearls Publishing, 2023, Tersedia di: https://www.ncbi.nlm.nih.gov/books/NBK556012/.
E. A. Ottesen, P. J. Hooper, M. Bradley, & G. Biswas, The global programme to eliminate lymphatic filariasis: health impact after 8 years dalam Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies, Washington (DC): National Academies Press (US), 2011. Tersedia di: https://www.ncbi.nlm.nih.gov/books/NBK62519/.
World Health Organization [WHO], Lymphatic filariasis - managing morbidity and preventing disability: an aide-mémoire for national programme managers, second edition, Geneva: WHO Publications, 2021,
H. Jia, J. Zhang, K. Ma, X. Qiao, L. Ren & X. Shi, “Application of convolutional neural networks in medical images: a bibliometric analysis”, Quantitative Imaging in Medicine and Surgery, vol. 14, no. 5, pp. 3501-3518, 2024, https://doi.org/10.21037/qims-23-1600.
P. K. Mall, P. K. Singh, S. Srivastav, V. Narayan, M. Paprzycki, T. Jaworska & M. Ganzha, “A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities”, Healthcare Analytics, vol. 4, 100216, 2023, https://doi.org/10.1016/j.health.2023.100216.
A. Yogianto, A. Homaidi & Z. Fatah, An Implementation of the K-Nearest Neighbors (KNN) Method for Classification of Heart Disease. G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 3, 1720-1728, 2024, https://doi.org/10.33379/gtech.v8i3.4495.
O. Bouazizi, C. Azroumahli, A. E. Mourabit, & M. Oussouaddi, “Road Object Detection using SSD-MobileNet Algorithm: Case Study for Real-Time ADAS Applications”, Journal of Robotics and Control, vol. 5, no. 2, , 2024, https://doi.org/10.18196/jrc.v5i2.21145.
J. Terven, D. M. C. Esparza, & J. A. R. Gonzalez “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS”, Machine Learning Knowledge Extraction, vol. 5, no. 4, pp. 1680-1716, 2023, https://doi.org/10.3390/make5040083.
G.Pant, D.P. Yadav, & A. Gaur, “ResNeXt convolution neural network topology-based deep learning model for identification and classification of Pediastrum”, Algal Research, vol. 48, 101932, 2020, https://doi.org/10.1016/j.algal.2020.101932.
D. N. Kiran, K. N. Anuradha, & R. A. Leena, “An Object Detection Using State-Of-Art Deep Learning Yolo Network”, International Journal of Research in Engineering and Science (IJRES), vol. 9, no. 12, pp. 1-4, 2021.
T. Sarkar, M. Rakhra, V. Sharma, S. Takkar & K. Jairath, "Comparative Study of Object Recognition Utilizing Machine Learning Techniques," International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India, 2024, pp. 726-731, https://doi.org/10.1109/IC3SE62002.2024.10593475.
F. Imanuel, S. K. Waruwu, A. Linardy, & A. M. Husein, “Literature Review Application of YOLO Algorithm for Detection and Tracking” Journal of Computer Networks, Architecture and High-Performance Computing, vol. 6, no. 3, pp. 1378-1383, 2024, https://doi.org/10.47709/cnahpc.v6i3.4374.
A. S. Editya, T. Ahmad, H. Studiawan, & S. Silalahi, “YOLOFOR: YOLO and Optical Flow For Forensic Analysis of Attacked Drone Case”, ICIC Express Letters, Part B: Applications, vol. 14, no. 12, pp. 1285-1293, 2023, https://doi.org/10.24507/icicelb.14.12.1285.
B. M. Ihsan, W. L. Puspita, L. Triana, Wahdaniah, Khayan, & C. D. Sucipto, “Identifikasi Mikrofilaria Menggunakan Reaksi Polimerase Berantai Konvensional dan QPCR-HRM”, Journal of Vocational Health Studies, vol. 8, no. 1, 2024, pp. 42-47, https://doi.org/10.20473/jvhs.V8.I1.2024.42-47.
L. Jiao & J. Zhao, "A Survey on the New Generation of Deep Learning in Image Processing," IEEE Access, vol. 7, pp. 172231-172263, 2019, https://doi.org/10.1109/ACCESS.2019.2956508.
J. Redmon, & A. Farhadi, “YOLOv3: An Incremental Improvement”, Computer Vision and Pattern Recognition, 2018, https://doi.org/10.48550/arXiv.1804.02767.
S. Xie, R. Girshick, P. Dollár, Z. Tu & K. He, “Aggregated Residual Transformations for Deep Neural Networks”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 5987-5995, 2017, https://doi.org/10.1109/CVPR.2017.634.
S. A. F. Manssor, S. Sun, & M. A. M. Elhassan, “Real-Time Human Recognition at Night via Integrated Face and Gait Recognition Technologies”. Sensors, vol. 21, 4323, 2021, https://doi.org/10.3390/s21134323.
Tzutalin. LabelImg. Retrieved from https://github.com/tzutalin/labelImg.
R. Girshick, “Fast R-CNN”, Computer Vision and Pattern Recognition, 2015, https://doi.org/10.48550/arXiv.1504.08083.
J. Redmon, S. Divvala, R. Girshick, & A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”, Computer Vision and Pattern Recognition, 2016, https://doi.org/10.48550/arXiv.1506.02640.
K. He, X. Zhang, S. Ren & J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778, 2016, https://doi.org/10.1109/CVPR.2016.90.
R. O. Duda, P. E. Hart, & D. G. Stork, Pattern Classification. John Wiley & Sons, 2012.
S. Marsland, Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC, 2015.
Y. Bengio, "Deep Learning of Representations for Unsupervised and Transfer Learning," Proceedings of ICML Workshop on Unsupervised and Transfer Learning, PMLR, vol. 27, pp. 17-36, 2012.
J. Du, J. Rong, S. Michalska, H. Wang, & Y. Zhang, “Feature selection for helpfulnessprediction of online product reviews: An empiricalstudy”, PLoS ONE, vol. 14, no. 12, e0226902, 2019,