Analisis dan Penerapan Process Mining Pada Data Perkuliahan Online Studi Kasus Virtual Class Universitas Lampung

Main Article Content

Suci Hasanah Bertha
Astria Hijriani
Yunda Heningtyas
Wartariyus Wartariyus

Abstract

— Increasing data innovation collectively affects all regions of the association. The development of the Corona virus episode towards the beginning of 2020 has made all forms of movement carried out online. Lampung University is one of the institutions affected by the Covid-19 outbreak. The rampant transmission of this virus requires that all the academics of the Lampung campus complete internet learning until things return to normal. All learning exercises are diverted by utilizing an online-based framework called Virtual Class University of Lampung. This research uses process mining. Process mining is a strategy that applies unique calculations to record information. Process mining is a valuation strategy between cycle models and event or event log information contained in a data frame. Event Logs can be easily incorporated into process models using heuristic mining algorithms. The best cycle model is obtained by utilizing three constraints, namely Relative-to-best Threshold (RT), Positive Observations Threshold (PT), and Dependency Threshold (DT). This limit is used to find the best health value. Health values are used to demonstrate model cycles by logging true or false events. If they match, the bottleneck found is valid or actually occurred. In addition, for this situation study, the soundness value obtained indicates suitability so that the obstacles that occur can be found. Each subject has a different frequency for activities completed in the Virtual Class. Process mining is the act of creating a cyclical model from the log of events that occurred, planning to work in the most common way of identifying and solving a problem. For this case the event log used is the event log from Virtual Class University of Lampung and handle mining can help distinguish bottlenecks that occur in the selected course.

Article Details

How to Cite
Bertha, S. H., Hijriani, A., Heningtyas, Y., & Wartariyus, W. (2024). Analisis dan Penerapan Process Mining Pada Data Perkuliahan Online Studi Kasus Virtual Class Universitas Lampung. Jurnal Pepadun, 5(2), 161–171. https://doi.org/10.23960/pepadun.v5i2.223

References

M. Abdurahman, Sistem Informasi Data Pegawai Berbasis Web Pada Kementerian Kelautan dan Perikanan Kota Ternate, Jurnal Ilmiah Ilkominfo, vol. 1, no. 2, 2018, https://doi.org/10.47324/ilkominfo.v1i2.10.

R. Adhim, M. A. Shiddiq, F. Ghizbunaza, & M. A. Yaqin, Process Discovery pada Event Log Permainan Hay Day menggunakan Algoritma Inductive Miner, Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2019, vol. 5, 2019.

M. Dumas, M. L. Rosa, J. Mendling, & H. A. Reijers, Fundamentals of Business Process Management, New York: Springer, 2018.

S. Huda, Penentuan Attribute Value Untuk Menentukan Bobot Fraud Dalam Transaksi Online, Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi (SENSITEK), 2018, http://dx.doi.org/10.30700/pss.v1i1.310.

L. Adhiguna, Analisis Proses Bisnis Penjualan Dengan Menggunakan Metode Process Mining Pada PT. XYZ Indonesia, Skripsi, Institut Teknologi Sepuluh Nopember, 2018.

F. A. Muttaqin, Implementasi Teks Mining pada Aplikasi Pengawasan Penggunaan Internet Anak ‘Dodo Kids Browser’, Skripsi, Universitas Komputer Indonesia, 2015.

W. M. P. v. d. Aalst & S. Dustdar, Process mining put into context, IEEE Internet Computing, vol. 16, no. 1, pp. 82-86, 2012, https://doi.org/10.1109/MIC.2012.12.

J. Carmona, B. v. Dongen, A. Solti, & M. Weidlich, Conformance Checking: Relating Processes and Models, Switzerland: Springer, pp. 1-277, 2018, https://doi.org/10.1007/978-3-319-99414-7.