IMPLEMENTASI ALGORITME SUPPORT VECTOR MACHINE DAN FITUR SELEKSI MRMR UNTUK PREDIKSI GLIKOSILASI

Main Article Content

Favorisen Rosyking Lumbanraja
Naurah Nazhifah
Dewi Asiah Shofiana
Akmal Junaidi

Abstract

During the protein formation process, there are post-translational modifications that provide additional properties and produce new R groups in the polypeptide chain. One of the results of post-translational modifications is glycosylation. Glycosylation reactions occur between protein and glucose at high concentrations. There are 3 categories of glycosylation found in the human body, namely N-glycosylation, O-glycosylation and C-glycosylation. To determine the functional role of glycosylation, that is by predicting the substrate of each glycosylation site. A computational approach is a way to predict the glycosylation site, using the Support Vector Machine (SVM) algorithm. In this study there are 2 types of data, namely independent data and benchmark data. The features used are feature extraction and feature selection using Maximum Redundancy Minimum Relevance (MRMR) of 25, 50 and 75 columns. SVM classification test using 5-fold cross validation. The highest accuracy result lies in the use of the 75 column MRMR selection feature. In Independent N data, the greatest accuracy lies in the sigmoid kernel with a causation value of 86.66%, while for independent C data, the accuracy is 87.5% in the sigmoid kernel and for independent O data, the largest accuracy is 89.31% which is in the RBF kernel. For benchmark N data, the highest accuracy is 70.54% in the RBF kernel, for benchmark C data the greatest accuracy lies in the RBF kernel with a value of 95.06% and for benchmak O data it is in the RBF kernel with the greatest accuracy, which is 92.64%. 

Article Details

How to Cite
Lumbanraja, F. R. ., Nazhifah, N., Shofiana, D. A., & Junaidi, A. (2022). IMPLEMENTASI ALGORITME SUPPORT VECTOR MACHINE DAN FITUR SELEKSI MRMR UNTUK PREDIKSI GLIKOSILASI. Jurnal Pepadun, 3(1), 13–21. https://doi.org/10.23960/pepadun.v3i1.96

References

R. K. Murray, D. K. Granner & V. W. Rodwell, Biokimia Harper Edisi 27, Buku Kedokteran EGC, 2012.

V. W. Rodwell, D. A. Bender, K. M. Botham, P. J. Kennely & P. A. Weil, Harper’s Illustrated Biochemistry (31st Edition). New York: McGraw-Hill Education, 2018.

Y. Mazola, G. Chinea, & A. Musacchio, “Integrating bioinformatics tools to handle glycosylation,” PLoS Computational Biology, 7 (12), 2011.

M. Mann & O. N. Jensen, “Proteomic analysis of post-translational modifications,” Nature Biotechnology, 21, pp. 255-261, 2003.

B. Macek, K. Forchhammer, J. Hardouin, E. Weber-Ban, C. Grangeasse & I. Mijakovic, “Protein posttranslational modifications in bacteria,” Nature Reviews Microbiology, 17 (11), pp. 651-664, 2019.

E. Suhartono, B. Setiawan, Mashuri, M. Juniarti, I. Kamilah & Haudhiya, “Modifikasi Protein Akibat Pembebanan Glukosa dengan Model Reaksi Glikosilasi Non Enzimatik," Jurnal Kedokteran dan Kesehatan, Vol 8 No. 1, 2008.

K. Ohtsubo & J. D. Marth, “Glycosylation in Cellular Mechanisms of Health and Disease,” Cell, 126 (5), pp. 855-867, 2006.

F. Schwarz & M. Aebi, “Mechanisms And Principles Of N-Linked Protein Glycosylation,” Current Opinion in Structural Biology, Vol. 21, pp. 576-582, 2011.

M. Aebi, “N-Linked Protein Glycosylation In The ER,” Biochimica et Biophysica Acta - Molecular Cell Research, 1833 (11), pp. 2430-2437, 2013.

J. Peter-Katalinic, "Methods In Enzymology: O-Glycosylation Of Proteins," Methods in Enzymology, 405, pp. 139-171, 2005.

T. Nishikawa, M. Adachi & M. Isobe, “C-Glycosylation,” Glycoscience, pp. 755-811, 2008.

N. De Jay, S. Papillon-Cavanagh, C. Olsen, N. El-Hachem, G. Bontempi & B. Haibe-Kains, “Mrmre: An R Package For Parallelized Mrmr Ensemble Feature Selection,” Bioinformatics, 29 (18), 2013.

N. Prakash, “Emerging Trends of Face Recognition: A Review,” Ti Journals, Vol 12 (2), pp. 242-250, 2012.

F. Li, C. Li, M. Wang, G. I. Webb, Y. Zhang, J. C. Whisstock & J. Song, “Glycomine: A Machine Learning-Based Approach For Predicting N-, C-And O-Linked Glycosylation In The Human Proteome,” Bioinformatics, Vol 31 (9), pp. 1411-1419, 2015.

H. Aliady, N. J. Tuasikal & E. Widodo, “Implementasi Support Vector Machine (SVM) dan Random Forest pada Diagnosis Kanker Payudara,” Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA), 278-285, 2018.

L. Guo, D. Rivero, J. Dorado, C. R. Munteanu & A. Pazos, “Automatic Feature Extraction Using Genetic Programming: An Application To Epileptic EEG Classification,” Expert System with Applications, Vol 38 (8), pp. 10425-10436, 2011.

L. Yu & H. Liu, “Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution,” Department of Computer Science & Engineering, Arizona State University, 2003.

M. Kuhn & K. Johnson, Applied predictive modeling. Berlin: Springer, 2013