KLASIFIKASI ABSTRAK JURNAL KOMPUTASI MENGGUNAKAN METODE TEXT MINING DAN ALGORITMA SUPPORT VECTOR MACHINE
Main Article Content
Abstract
The University of Lampung especially Computer Science Departement has an online journal that publishes various scientific articles written by researchers both students and lecturers. This scientific article is called the online Computating Journal which is published once every 6 months. But, this online Computating Journal has not been structured and classified into the category of science that more specific. Therefore, in this research the abstract Computating Journal will be classified using text mining techniques to process the abstract become more structured and retrieve information in it. Then, the information in the abstract is extracted as a feature by the TFIDF weighting technique. The proposed classification model uses the support vector machine algorithm that has strong consistency. The model classification will be validated by applying the 10-Fold Cross Validation technique.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kementrian Pendidikan dan Kebudayaan (Kemdikbud). 2018. Arti kata jurnal - Kamus Besar Bahasa Indonesia (KBBI) Online, https://kbbi.web.id/jurnal, Diakses pada 6 Desember 2018.
Khalid, Rintyarna, B. S., dan Arifin, A. Z. 2015. “Seleksi fitur dua tahap menggunakan information gain dan artificial bee colony untuk kategorisasi teks berbasis support vector machine”. SYSTEMIC, vol. 1, no. 2, ISSN 2460-8092, pp. 22-26.
Pratama, D. H. 2013. “Implementasi support vector machine (svm) untuk klasifikasi dokumen”. Institut Pertanian Bogor, pp. 1-19.
Somantri, O. dan Apriliani, D. 2018. “Support vector machine berbasis feature selection untuk sentiment analysis kepuasan pelanggan terhadap pelayanan warung dan restoran kuliner kota tegal”, Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, pp. 537–548.