Analisis Sentimen Opini Masyarakat Terhadap Pelayanan BPJS Kesehatan Provinsi Lampung Berbasis Twitter

Main Article Content

Admi Syarif
Arafia Isnayu Akaf
Rizky Prabowo
Kurnia Muludi

Abstract

Nowadays, the internet has increased the amount of information stored and accessed through the web at a very fast speed. The internet can be a place to express opinions on health topics, politics, companies, and others. Many social media are used by the people of Lampung in expressing opinions and seeking information. Twitter is one of the communication media that is in great demand by the public. There are various kinds of topics discussed by Twitter users, one of the topics that are currently being discussed is the Lampung Health Social Security Administration Agency (BPJS). Health is also a very important thing and is still a conversation that is often discussed anywhere and anytime. BPJS Health helps the community in overcoming a declining economy, with BPJS Health, the community does not have to pay for medical expenses. Therefore, the service from BPJS Kesehatan Lampung will be carried out by sentiment analysis so that it can be known whether the public opinion about BPJS Kesehatan Lampung is positive or negative. This study uses the Naïve Bayes algorithm. This sentiment uses a dataset from Twitter which uses several keywords regarding BPJS Kesehatan Lampung. Based on the research results, it is known that the Naïve Bayes algorithm has an accuracy value of 89,33%.

Article Details

How to Cite
Syarif, A., Akaf, A. I., Prabowo, R., & Muludi, K. (2022). Analisis Sentimen Opini Masyarakat Terhadap Pelayanan BPJS Kesehatan Provinsi Lampung Berbasis Twitter. Jurnal Pepadun, 3(3), 380–388. https://doi.org/10.23960/pepadun.v3i3.136

References

S. A. Putri, P. D. Kusuma, & C. Setianingsih, “Clustering Topik Pada Data Sentimen BPJS Kesehatan Menggunakan Metode Latent Dirichlet Allocation (lda),” eProceedings of engineering, vol. 8, no. 5, pp. 6097–6105, 2021.

D. Zimbra, A. Abbasi, D. Zeng, & H. Chen, “The state-of-the-art in twitter sentiment analysis: A review and benchmark evaluation,” ACM Trans. Manag. Inf. Syst., vol. 9, no. 2, 2018, doi: 10.1145/3185045.

M. Nurmalasari, N. Anggita Temesvari, S. N. Maula, “Analisis Sentimen terhadap Opini Masyarakat dalam Penggunaan Mobile-JKN untuk Pelayanan BPJS Kesehatan Tahun 2019,” Heal. Inf. Manag. J. ISSN, vol. 8, no. 1, pp. 2655–9129, 2020.

A. Gusnita, “Analisis Implementasi Jaminan Sosial Nasional Pada Badan Penyelenggara Jaminan Sosial Kesehatan (Bpjs) Kota Metro,” Pros. SNaPP2017 Sos. Ekon. dan Hum., pp. 692–698, 2017.

P. Mehta & S. Pandya, “A review on sentiment analysis methodologies, practices and applications,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 601–609, 2020.

R. Novendri, A. S. Callista, D. N. Pratama, & C. E. Puspita, “Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes,” Bull. Comput. Sci. Electr. Eng., vol. 1, no. 1, pp. 26–32, 2020, doi: 10.25008/bcsee.v1i1.5.

M. Yunus, M. Husni, & M. M. Mufadhdhal, “Klasifikasi Sentimen Terhadap Badan Penyelenggara Jaminan Sosial (BPJS) Pada Media Sosial Twitter Menggunakan Naive Bayes,” Smatika J., vol. 11, no. 02, pp. 81–91, 2021, doi: 10.32664/smatika.v11i02.577.

M. Abbas, K. Ali, A. Jamali, K. A. Memon, & A. A. Jamali, “Multinomial Naive Bayes Classification Model for Sentiment Analysis Classification for Sentiment Analysis View project Antenna Designing View project Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, doi: 10.13140/RG.2.2.30021.40169.

H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, & I. Cholissodin, “Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 180, 2017, doi: 10.25126/jtiik.201743251.

I. E. Tiffani, “Optimization of Naïve Bayes Classifier By Implemented Unigram, Bigram, Trigram for Sentiment Analysis of Hotel Review,” J. Soft Comput. Explor., vol. 1, no. 1, pp. 1–7, 2020, doi: 10.52465/joscex.v1i1.4.

W. A. Prabowo & C. Wiguna, “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 149, 2021, doi: 10.30865/mib.v5i1.2604.

K. Muludi, M. Surya Akbar, D. A. Shofiana & A. Syarif, “Sentiment Analysis Of Energy Independence Tweets Using Simple Recurrent Neural Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 4, pp. 339–348, 2021, doi: 10.22146/ijccs.xxxx.