Prediksi Harga Bitcoin Menggunakan Metode Long Short Term Memory
Main Article Content
Abstract
Investing has become a popular activity among the public as it can increase returns from such activities. Currently, there are various investment instruments available such as stocks, bonds, gold, property, and the latest is cryptocurrency. Since its inception in 2008, Bitcoin has emerged as the leading digital currency in terms of market capitalization and continues to attract investor attention. The first Bitcoin transaction occurred in January 2009. More than two years later, various reports estimated that Bitcoin circulation had exceeded 6,5 million with around 10000 users. This has led to a growing number of people interested in investing in Bitcoin. Based on these facts, it is important to predict Bitcoin prices to understand how Bitcoin prices will develop in the future. By predicting future Bitcoin prices, investors can estimate Bitcoin prices from the predicted prices in order to avoid making mistakes in investing and thus prevent significant potential losses. One way to predict Bitcoin prices is by using the Long Short-Term Memory (LSTM) method. One of the best models with a composition of 50 neurons and 400 epochs using Adam optimization, produce RMSE of 1027 and MAPE 1,76%, which mean the forecasting model has highly accurate forecasting. Then, to facilitate non-programmer users in forecasting, a web-based Graphical User Interface (GUI) is built using the Streamlit library.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
I. O. Adam & M. Dzang Alhassan, “Bridging the global digital divide through digital inclusion: the role of ICT access and ICT use,” Transform. Gov. People, Process Policy, vol. 15, no. 4, pp. 580–596, 2020, https://doi.org/10.1108/TG-06-2020-0114.
A. A. Pramono, Memprediksi Harga Cryptocurrency Dengan Menggunakan Metode Long Short Term Memory (LSTM). Skripsi. Program Studi Matematika Fakultas Sains dan Teknologi - Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2022.
M. N. Hasani, M. Ramadhan, K. Mariyani, R. Setiawan, I. Sucidha, & Sardjono, “Analisis Cryptocurrency sebagai Alat Alternatif dalam Berinvestasi di Indonesia Pada Mata Uang Digital Bitcoin,” J. Ilmu Ekonomi Bisnis, vol. 8, no. 2, pp. 329–344, 2022, [Online]. Available: https://ejournal.stiepancasetia.ac.id/jieb/article/view/762.
D. G. Baur, T. Dimpfl, & K. Kuck, “Bitcoin, gold and the US dollar – A replication and extension,” Finance Research Letters, vol. 25, pp. 103–110, Jun. 2018, https://doi.org/10.1016/j.frl.2017.10.012.
R. Böhme, N. Christin, B. Edelman, & T. Moore, “Bitcoin: Economics, Technology, and Governance,” Journal of Economic Perspectives, vol. 29, no. 2, pp. 213–238, 2015, https://www.aeaweb.org/articles?id=10.1257/jep.29.2.213.
D. G. Arwono, H. Iskandar, & D. J. Wardana, “Tinjauan Yuridis Regulasi Cryptocurrency terhadap Tindak Pidana Kejahatan di Indonesia,” Amnesti: Jurnal Hukum, vol. 5, no. 1, pp. 204–214, 2023, https://doi.org/10.37729/amnesti.v5i1.2759.
T. Kuncara & K. P. Anugrah, “Analisis Volatilitas Cryptocurrency Pada Sebelum Pandemi dan Pada Saat Pandemi Covid 19 dengan Metode Return Pada Bitcoin Dan Ethereum,” Keunis, vol. 11, no. 1, pp. 86-94, 2023, http://dx.doi.org/10.32497/keunis.v11i1.3981.
M. Kafil, “Penerapan Metode K-Nearest Neighbors untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” J. Mahasiswa Teknik Informatika, vol. 3, no. 2, pp. 59–66, 2019, https://doi.org/10.36040/jati.v3i2.860.
T. B. Sianturi, I. Cholissodin, & N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 1101–1107, 2023, https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12384.
H. Prasetyanwar & Jondri, “Peramalan nilai tukar IDR-USD menggunakan Long Short Term Memory,” e-Proceeding of Engineering, vol. 5, no. 2, pp. 3820–3826, Agustus 2018.
F. Febriansyah, A. Sujjada, & F. Sembiring, “Prediksi Harga Bitcoin Menggunakan Algoritma Long Short-Term Memory (LSTM)”, Jurnal Inovtek Polbeng: Seri Informatika, vol. 9, no. 1, 2024, https://doi.org/10.35314/isi.v9i1.4247.
J. Qiu, B. Wang, & C. Zhou, “Forecasting stock prices with long-short term memory neural network based on attention mechanism,” PLoS One, vol. 15, no. 1, pp. 1–15, 2020, https://doi.org/10.1371/journal.pone.0227222.
F. Nailah, D. I. Larasati, S. Siswanto, & A. Kalondeng, “Optimasi Metode Jaringan Saraf Tiruan Backpropagation untuk Peramalan Curah Hujan Bulanan di Kota Denpasar”, MATHunesa: Jurnal Ilmiah Matematika, vol. 12, no. 1, pp. 134-140, 2024, https://doi.org/10.26740/mathunesa.v12n1.p134-140.
T. O. Hodson, “Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not”, Geoscientific Model Development Discussions, 15, pp. 5481-5487, 2022, https://doi.org/10.5194/gmd-15-5481-2022.
M. M. Muhtadi, M. D. Friyadi, & A. Rahmani, “Analisis GUI Testing pada Aplikasi E-Commerce menggunakan Katalon,” Prosiding Industrial Research Workshop National Seminar, vol. 10, no. 1, pp. 1387–1393, 2019, https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/1443.