Rancang Bangun Aplikasi Deteksi Penyakit Tanaman Jagung Melalui Citra Daun Berbasis Android Menggunakan Algoritma Convolutional Neural Network

Main Article Content

Ulfa Khaira
Indra Weni
Weni Wilia

Abstract

Corn is a staple product that is important to Indonesia's development and economy. Corn disease is a major source of yield loss and lower earnings in the corn industry. Each disease demands a distinct intervention, but not all farmers know the type of disease that allows for mistakes in disease management. Convolutional Neural Network (CNN) and transfer learning can provide the best way for recognizing corn leaf disease, as both methods are known to classify objects with high accuracy. Transfer learning was chosen because it allows features and weights from prior training sessions to be reused. As a result, computation time can be reduced while accuracy is raised. In this study, an android app was developed using the CNN pre-trained models to identify corn leaf disease. The dataset includes 2600 images of corn leaf samples from three categories (Bacterial Leaf Blight, Common Rust, and healthy leaves). The model used is MobileNetV2. From the experimental results, the MobileNetV2 produced accuracy of 99% for Bacterial Leaf Blight, 100 % for Common Rust, and 100% for healthy leaves. Performance efficiency testing showed that the highest CPU and memory usage were 15.8% and 178 MB, respectively. This app is compatible with all Android versions, from 8.0 (Oreo) to 13 (Tiramisu).

Article Details

How to Cite
Khaira, U., Weni, I., & Wilia, W. (2024). Rancang Bangun Aplikasi Deteksi Penyakit Tanaman Jagung Melalui Citra Daun Berbasis Android Menggunakan Algoritma Convolutional Neural Network. Jurnal Pepadun, 5(1), 1–11. https://doi.org/10.23960/pepadun.v5i1.210

References

B. Arifin, N. A. Achsani, D. Martianto, L. K. Sari, and A. H. Firdaus, “The Future of Indonesian Food Consumption,” J. Ekon. Indones., 2019, doi: 10.52813/jei.v8i1.13.

A. Mahmud, H. Triwidodo, and A. Nurmansyah, “Analisis Kinerja Petugas Pengendali Organisme Pengganggu Tumbuhan di Kabupaten Subang,” J. Ilmu Pertan. Indones., vol. 26, no. 3, pp. 392–399, Jun. 2021, doi: 10.18343/jipi.26.3.392.

A. Camargo and J. S. Smith, “Image pattern classification for the identification of disease causing agents in plants,” Comput. Electron. Agric., 2009, doi: 10.1016/j.compag.2009.01.003.

A. Vibhute and S. K. Bodhe, “Applications of Image Processing in Agriculture: A Survey,” Int. J. Comput. Appl., 2012, doi: 10.5120/8176-1495.

G. Anthonys and N. Wickramarachchi, “An image recognition system for crop disease identification of paddy fields in Sri Lanka,” in ICIIS 2009 - 4th International Conference on Industrial and Information Systems 2009, Conference Proceedings, 2009. doi: 10.1109/ICIINFS.2009.5429828.

I. P. Sari, “Perancangan dan Simulasi Deteksi Penyakit Tanaman Jagung Berbasis Pengolahan Citra Digital Menggunakan Metode Color Moments dan GLCM,” Semin. Nas. Inov. Dan Apl. Teknol. Di Ind., 2016.

E. M. de Oliveira, D. S. Leme, B. H. G. Barbosa, and M. P. Rodarte, “A computer vision system for coffee beans classification based on computational intelligence techniques,” J. Food Eng., vol. 171, pp. 22–27, Feb. 2016, doi: 10.1016/j.jfoodeng.2015.10.009.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, Nov. 2018, doi: 10.1016/j.heliyon.2018.e00938.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An astounding baseline for recognition,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2014. doi: 10.1109/CVPRW.2014.131.

R. Scroggins, “SDLC and Development Methodologies,” Glob. J. Comput. Sci. Technol. C Softw. Data Eng., 2014.

D. Nurcahya, H. Nurfauziah, and H. Dwiatmodjo, “Comparison of Waterfall Models and Prototyping Models of Meeting Management Information Systems,” J. Mantik, 2022.

A. Dalklran et al., “Transfer learning for drug-target interaction prediction,” Bioinformatics, 2023, doi: 10.1093/bioinformatics/btad234.

M. Iman, H. R. Arabnia, and K. Rasheed, “A Review of Deep Transfer Learning and Recent Advancements,” Technologies, vol. 11, no. 2, p. 40, Mar. 2023, doi: 10.3390/technologies11020040.

I. D. Alviyando, R. Munadi, and Sussi, “Integrasi Monitoring Pembayaran Dan Monitoring Posisi Bis Melalui Aplikasi Android Berbasis Internet of Things,” e-Proceeding Eng., vol. 8, no. 6, pp. 11599–11609, 2021.

R. Scroggins, “SDLC and Development Methodologies,” Global Journal of Computer Science and Technology: Software & Data Engineering, Vol. 14, No. 7, 2014.

D. Nurcahya, H. Nurfauziah, & H. Dwiatmodjo, “Comparison of Waterfall Models and Prototyping Models of Meeting Management Information Systems,” Jurnal Mantik, Vol. 6, No. 2, pp. 1924-1939, 2022.

A. Dalklran, A. Atakan, A. S. Rifaioglu, M. J. Martin, R. C. Atalay, A. C. Acar, T. Dogan, & V. Atalay, “Transfer Learning for Drug-Target Interaction Prediction,” Bioinformatics, Vol. 39, pp. i103-i110, 2023, doi: 10.1093/bioinformatics/btad234.

M. Iman, H. R. Arabnia, & K. Rasheed, “A Review of Deep Transfer Learning and Recent Advancements,” Technologies, Vol. 11, No. 2, p. 40, Mar. 2023, doi: 10.3390/technologies11020040.

I. D. Alviyando, R. Munadi, & Sussi, “Integrasi Monitoring Pembayaran dan Monitoring Posisi Bis Melalui Aplikasi Android Berbasis Internet of Things,” e-Proceedings of Engineering, Vol. 8, No. 6, pp. 11599–11609, 2021.