Komparasi Peramalan ARIMA dan RNN pada Tunggakan Peserta BPJS Kesehatan Cabang Jambi
Main Article Content
Abstract
BPJS Kesehatan is a public legal entity that is directly responsible to the President who has the task of providing Social Security to the community and has the authority to hold dues every month for participants. BPJS Kesehatan participants who are independent participants have an obligation to pay dues every month. Pandemic conditions affect participants' incomes in paying dues as a result participants' arrears rise. Arrears participants also occurred in BPJS Kesehatan Jambi Branch Office. BPJS Kesehatan branch office has SIMANIS (Sistem Penagihan Iuran Terintegrasi) application. Through this system, BPJS Kesehatan can reduce the arrears participants, especially Jambi branch offices. Thus, it makes easier for each branch office to evaluate the right policy, through arrears data it can be processed into forecasting information using traditional statistic methods ARIMA and machine learning methods RNN (Recurrent Neural Network). Therefore, this study aims to compare ARIMA and RNN in forecasting on premium arrears data of BPJS Kesehatan Jambi Branch Office participants. The dataset used is data on arrears of premium participants BPJS Kesehatan branch office Jambi per week. Through this forecasting, the results RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) from RNN 1 hidden layer 1 neuron method have RMSE 2739803819 and MAPE 1.97%, which is better than ARIMA (3,1,3) with RMSE 3238308628 and MAPE 2.62%. Then, to make it easier for non-programmer users to forecast built a graphical user interface (GUI) based on the web with Streamlit library. This research is expected to validate the forecasting model that is suitable for the arrears data of BPJS Kesehatan Jambi Branch Office participants.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
(2020) Sejarah Perjalanan Jaminan Sosial di Indonesia. [Online]. Available: https://bpjs-kesehatan.go.id/bpjs (accessed Jun. 09, 2021).
S. Syamsinar, A. S. Batara, & A. R. Amelia, “Gambaran Kemampuan Membayar Iuran BPJS Kesehatan pada Pedagang di Pasar Terong Kota Makassar,” Wind. Public Heal. J., vol. 1, no. 6, pp. 797–807, 2021, doi: 10.33096/woph.v1i6.333.
N. Latifah, Y. Riza, & H. K. Anam, “Hubungan Pendapatan dan Pengetahuan Tentang Kewajiban Membayar Iuran dengan Kepatuhan Membayar Iuran Peserta Bpjs Non PBI di BPJS Kesehatan Kantor Kabupaten Banjar Tahun 2020,” Doctoral dissertation, Universitas Islam Kalimantan, Indonesia, 2020.
E. Maharani. (2016) Tunggakan Iuran BPJS di Jambi Capai Rp 11 Miliar. [Online]. Available: https://news.republika.co.id/berita/o7es4x335/tunggakan-iuran-bpjs-di-jambi-capai-rp-11-miliar (accessed Aug. 25, 2021).
R. Annisa, S. Winda, E. Dwisaputro, & K. N. Isnaini, “Mengatasi Defisit Dana Jaminan Sosial Kesehatan Melalui Perbaikan Tata Kelola,” INTEGRITAS J. Antikorups, vol. 6, no. 2, pp. 209–224, 2020, doi: 10.32697/integritas.v6i2.664.
D. Wijayanti & R. Pulungan, “Peramalan Deret Waktu Menggunakan Model Fungsi Basis Radial (Rbf) Dan Auto Regressive Integrated Moving Average (Arima),” J. MIPA Unnes, vol. 35, no. 2, p. 114402, 2012.
J. Liu, L. Ding, X. Guan, J. Gui, & J. Xu, “Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning,” J. Data, Inf. Manag., vol. 2, no. 4, pp. 243–255, 2020, doi: 10.1007/s42488-020-00031-1.
Suhartono & A. Endharta, “Suhartono, Peramalan Konsumsi Listrik Jangka Pendek dengan Arima Musiman Ganda dan Elman-Recurrent Neural Network,” Jurnal Ilmiah Teknologi Informasi, 7(4), 183-190, 2009.
S. Makridakis, E. Spiliotis, & V. Assimakopoulos, “Statistical and Machine Learning forecasting methods: Concerns and ways forward,” PLoS One, vol. 13, no. 3, 2018, doi: 10.1371/journal.pone.0194889.
H. T. Handoko, Dasar-Dasar Manajemen Produksi dan Operasional, Yogyakarta: BPFE, 2000.
H. Diana & C. D. Raharjo, “Sistem Pendukung Keputusan Untuk Forecasting Penjualan di Toko Sumber Saudara,” Prosiding SNATIF, pp. 275–280, 2015.
J. Christy, A. P. Hintarsyah, & H. L. H. S. Warnars, “Forecasting Sebagai Decision Support Systems Aplikasi dan Penerapannya Untuk Mendukung Proses Pengambilan Keputusan.,” J. Sist. Komput., vol. 8, no. 1, pp. 19–27, 2018.
D. C. Montgomery & L. A. Johnson, Forecasting and Time Series Analysis, New York: McGraw-Hill, 1998.
R. A. Pitaloka, S. Sugito, & R. Rahmawati, “Perbandingan Metode Arima Box-Jenkins Dengan Arima Ensemble Pada Peramalan Nilai Impor Provinsi Jawa Tengah,” J. Gaussian, vol. 8, no. 2, pp. 194–207, 2019, doi: 10.14710/j.gauss.v8i2.26648.
D. E. Tarkus, S. R. U. A. Sompie, & A. Jacobus, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,” J. Tek. Inform., vol. 15, no. 2, pp. 137–144, 2020.
A. M. Siregar, J. H. Jaman, & A. Mufti, “Analisa Prediksi Kesehatan Masyarakat Indonesia Menggunakan Recurrent Neural Network,” INTERNAL (Information System Journal), vol. 4, no. 1, pp. 28–34, 2021.
A. N. Habowski, T. J. Habowski, & M. L. Waterman, “GECO: gene expression clustering optimization app for non-linear data visualization of patterns,” BMC Bioinformatics, vol. 22, no. 1, 2021, doi: 10.1186/s12859-020-03951-2.
M. C. Hidayatullah & A. Fathan, (2021). Membuat Aplikasi Web Sains Data dengan Mudah Menggunakan Streamlit. [Online]. Available: https://informatics.uii.ac.id/2021/03/15/streamlit-membuat-aplikasi-web-sains-data/.
I. Eldiyana, E. Nurlaelah, & N. Herrhyanto, “Estimasi Missing Data dengan Metode Multivariate Imputation by Chained Equations (MICE) Untuk Membentuk Persamaan Regresi Linear Berganda,” J. EurekaMatika, vol. 8, no. 1, 2020.
W. Musu & A. Ibrahim, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5,” SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, Vol. 10, No. 1, pp. 186-195, 2021.
M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average Dan Exponential Smoothing Untuk Sistem Peramalan Pendapatan Pada Perusahaan XYZ,” J. Sist. dan Inform., vol. 13, no. 2, 2019.
M. Hudzaifah, A. A. Rismayadi, & S. Topiq, “Implementasi Metode Time Series Decompostion Untuk Peramalan Lalu Lintas Jangka Pendek Berdasarkan Waktu Tempuh dan Cuaca,” J. Inform., vol. 6, no. 1, pp. 1–8, 2019.
I. Mardiyah, W. D. Utami, D. C. R. Novitasari, M. Hafiyusholeh, & D. Sulistiyawati, “Analisis Prediksi Jumlah Penduduk di Kota Pasuruan Menggunakan Metode Arima,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 525–534, Sep. 2021.
A. A. Karia, I. Bujang, & I. Ahmad, “Fractionally integrated ARMA for crude palm oil prices prediction: Case of potentially overdifference,” J. Appl. Stat., vol. 40, no. 12, 2013.
I. P. P. Wikantara, “Perbandingan Model Arima Dengan Model Recurrent Artificial Neural Network Dalam Memprediksi Jumlah Wisatawan Asing Yang Datang Ke Provinsi Bali,” Undergraduate Thesis, Institut Teknologi Sepuluh November, Surabaya, Indonesia, 2016.
(2021) Direktorat Analisis dan Pengembangan Statistik BPS. ARIMA (Autoregressive Integrated Moving Average). [Online]. Available: https://daps.bps.go.id/file_artikel/77/arima.pdf.