Analisis Sentimen Opini Masyarakat Terhadap Penggunaan ChatGPT di Bidang Pendidikan Berbasis Twitter

Main Article Content

Muhammad Galih Ramaputra
Hendri Purnomo

Abstract

This research aims to analyze the sentiment of Indonesian society towards the use of ChatGPT technology in education. The use of ChatGPT in an educational context offers opportunities to simplify the learning process and support teachers in developing teaching materials. However, this technology also raises various concerns related to dependence on technology, privacy, and social interaction between students and teachers. The research method used is sentiment analysis by collecting data through social media (Twitter, Facebook) using API and Orange Data Mining platform to process the data. The results show that this technology is well received by most people, although there are some concerns regarding its negative impact. The classification models used in this research are Decision Tree and k-Nearest Neighbors (kNN), with the Decision Tree model showing superior results. This research is expected to provide insights for policy makers and technology developers in optimizing the application of ChatGPT in education in Indonesia

Article Details

How to Cite
Ramaputra, M. G., & Purnomo, H. (2024). Analisis Sentimen Opini Masyarakat Terhadap Penggunaan ChatGPT di Bidang Pendidikan Berbasis Twitter. Jurnal Pepadun, 5(3), 275–285. https://doi.org/10.23960/pepadun.v5i3.242

References

R. Yasmar & D. R. Amalia, “Analisis SWOT Penggunaan ChatGPT Dalam Dunia Pendidikan Islam,” Fitrah J. Stud. Pendidik., vol. 15, no. 1, pp. 43-64, 2024, doi: 10.47625/fitrah.v15i1.668.

F. A. Tohir, B. Irawan, & A. Bahtiar, “Analisis Sentimen Aplikasi ChatGPT Mobile Menggunakan Agoritma Naïve Bayes,” vol. 10, no. 2, pp. 179-192, 2024.

P. A. Permatasari, L. Linawati, & L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 177, 2021, doi: 10.24843/mite.2021.v20i02.p01.

L. Berriche & S. Larabi-Marie-Sainte, “Unveiling ChatGPT text using writing style,” Heliyon, vol. 10, no. 12, p. e32976, 2024, doi: 10.1016/j.heliyon.2024.e32976.

A. A. Sobari & M. Syafrullah, “Penerapan Algoritma K-Nearest Neighbors Untuk Mengklasifikasi Sentiemen Masyarakat Terhadap Keberadaan ChatGPT,” Pros. Semin. Nas., vol. 2, no. September, pp. 836-845, 2023.

A. D. Pratama & H. Hendry, “Analisa Sentimen Masyarakat Terhadap Penggunaan Chatgpt Menggunakan Metode Support Vector Machine (Svm),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 327-338, 2024, doi: 10.29100/jipi.v9i1.4285.

E. Lutfina, W. Andriana, S. Quamila, P. Wiratmaja, and E. Febrianti, “Metode dan Algoritma Dalam Sentimen Analisis: Systematic Literature Review Info Artikel,” Science, Technology and Management Journal, vol. 4, no. 2, pp. 67-79, 2024.

A. Ardiansyah, E. A. Pratama, & N. I. Fadlilah, “Analisis Sentimen Pengguna Terhadap Aplikasi ChatGPT Di Google Play Store: Penerapan Algoritma Support Vector Machine,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 11, no. 2, pp. 247-254, 2024.

Y. Akbar, A. N. H. Regita, & T. Wahyudi, “Analisa Sentimen Pada Media Sosial ‘ X ’ Pencarian Keyword ChatGPT Menggunakan Algoritma K-Nearest Abstrak,” Jurnal Indonesia: Manajemen Informatika dan Komunikasi, vol. 5, no. 3, pp. 3291-3305, 2024.

T. Y. Pahtoni & H. Jati, “Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 2, pp. 329-336, 2024, doi: 10.25126/jtiik.20241127276.

D. Transiska, D. Febriawan, & F. N. Hasan, “Analisis Sentimen Terhadap Penggunaan Chatgpt Berdasarka Twitter Menggunakan Algoritma Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1077, 2024, doi: 10.30865/mib.v8i2.7540.

J. Labobar, "Artificial Intelligence: Tantangan Dalam Pembelajaran Kewarganegaraan" Civ. Educ. Soc. Sci. J. vol. 6, no. 1, pp. 63-75, 2024, doi: 10.3285/cessj.v6i1.5224

M. I. Rifaldi, Y. R. Ramadhan, & I. Jaelani, “Analisis Sentimen Terhadap Aplikasi ChatGPT Pada Twitter Menggunakan Algoritma Naïve Bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 2, pp. 802-814, 2023.

A. Kaharudin, A. A. Supriyadi, H. Baitika, & M. Derryanur, “Analisis Sentimen pada Media Sosial dengan Teknik Kecerdasan Buatan Naïve Bayes: Kajian Literatur Review,” OKTAL J. Ilmu, vol. 2, no. 6, pp. 1642-1649, 2023.

A. Fauzi, M. F. Akbar, & Y. F. A. Asmawan, “Sentimen Analisis Berinternet Pada Media Sosial dengan Menggunakan Algoritma Bayes,” J. Inform., vol. 6, no. 1, pp. 77-83, 2019, doi: 10.31311/ji.v6i1.5437.