Rainfall Prediction Using Long Short-Term Memory Method (Case Study: Jambi City)
Main Article Content
Abstract
Rainfall prediction plays a crucial role in various fields, including meteorology, agriculture, and disaster mitigation. However, the accuracy of such predictions is often affected by missing values in historical rainfall data. To address this issue, this study employs three interpolation methods—linear, quadratic, and quadratic spline—to fill in the missing values. These values are then used for rainfall prediction in Jambi City using the LSTM model. The rainfall data used in this study were obtained from the BMKG Online Data portal, covering the period from 2016 to 2024. The preprocessing stages included data cleaning, applying interpolation methods to address missing values, normalizing the data, and splitting the dataset into training and testing sets. The LSTM model was developed with various hyperparameter configurations to achieve optimal performance. The model’s performance was evaluated using the Root Mean Square Error (RMSE) metric to assess the accuracy of the predictions. The experimental results show that linear interpolation yields the best performance, with RMSE Train and Test values of 13.0661 and 13.1388, respectively. The model, configured with 50 neurons, 75 epochs, a batch size of 32, and using the RMSprop optimizer, demonstrated improved prediction accuracy compared to other interpolation methods. This research confirms the importance of proper data preprocessing in improving the accuracy of time series prediction models. With optimal handling of missing values, LSTM-based prediction models can produce more accurate rainfall forecasts, benefiting various sectors that depend on meteorological data. Finally, to facilitate forecasting for non-programmer users, a web-based Graphical User Interface (GUI) was developed using the Streamlit library.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
B. Susilo. (2021). Mengenal Iklim dan Cuaca di Indonesia. [Online]. Available: https://books.google.co.id/books?id=Cl5zEAAAQBAJ
M. Toyib, T. Decky, K. Pratama, and I. Aqil, “Prediksi Kondisi Cuaca di Kabupaten Bayuwangi Menggunakan Metode LSTM,” Scientica: Jurnal Ilmiah Sains Dan Teknologi, 2(7), 78–84, 2024.
BMKG. (2024). Buku Saku CLIMATOLOGY. [Online]. Available: https://iklim.bmkg.go.id/bmkgadmin/storage/brosur/Buku%20Saku_KLIMATOLOGI_bnew%20.pdf
R. P. Dhenanta and I. B. Kholifah, “Prediksi Curah Hujan Bulanan Kabupaten Trenggalek Tahun 2022 dan 2023 Menggunakan Metode ARIMA,” Seminar Nasional Official Statistics, No. 1, pp. 1135-1144, 2022.
Agungnoe. (2024). Pentingnya Memahami Cuaca dan Pengaruhnya ke Pertanian. [Online]. Available: https://ugm.ac.id/id/berita/pentingnya-memahami-cuaca-dan-pengaruhnya-ke-pertanian/
A. Wicaksono, “Pengaruh Fenomena La Nina Terhadap Anomali Curah Hujan Bulanan di Sulawesi Selatan,” Buletin Meteorologi, Klimatologi Dan Geofisika, 2(3), 35-49, 2022.
T. Ericko, M. D. Lauro, and T. Handhayani, “Prediksi Harga Pangan Di Pasar Tradisional Kota Surabaya Dengan Metode LSTM,” Journal Ilmu Komputer dan Sistem Informasi, 2023.
A. Widianti and I. Pratama, “Penanganan Missing Values Dan Prediksi Data Timbunan Sampah Berbasis Machine Learning,” Rabit: Journal of Information Technology and Systems Univrab, vol. 9, no. 2, pp. 242–251, Jul. 2024, doi: 10.36341/rabit.v9i2.4789.
S. Febrianti, “Pemodelan Autoregressive Integrated Moving Average (Arima) Dengan Missing Data Melalui Metode Interpolasi,” Thesis, Universitas Lampung, Bandar Lampung, 2019.
M. R. Ismail, A. Zain, F. Dewantoro, and D. Pratiwi, “Perhitungan Data Curah Hujan yang Hilang dengan Menggunakan Metode Interpolasi Linier,” Jurnal Teknik Sipil, Vol.4, No.2, 2023.
S. Sofiyani and Y. Permanasari, “Penerapan Metode Cubic Spline Interpolation untuk Menentukan Peluang Kematian pada Tabel Mortalita,” Journal of Mathematical Research, pp. 29–36, Jul. 2023, doi: 10.29313/jrm.v3i1.1735.
R. S. Budi, R. Patmasari, and S. Saidah, “Klasifikasi Cuaca Menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng, Vol. 8, No. 5, 2021.
C. Tian, J. Ma, C. Zhang, and P. Zhan, “A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network,” Energies (Basel), vol. 11, no. 12, Dec. 2018, doi: 10.3390/en11123493.
E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” GEOMATICS, vol. 24, no. 2, p. 61, Nov. 2018, doi: 10.24895/jig.2018.24-2.810.
A. Arwansyah, S. Suryani, H. Sy, U. Usman, A. Ahyuna, and S. Alam, “Time Series Forecasting Menggunakan Deep Gated Recurrent Units,” Digital Transformation Technology, vol. 4, no. 1, pp. 410–416, Jun. 2022, doi: 10.47709/digitech.v4i1.4141.
D. Tarkus, S. R. U. A. Sompie, and A. Jacobus, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,” Jurnal Teknik Informatika, 2020.
F. Irawan, “Prediksi Curah Hujan Menggunakan Recurrent Neural Network (RNN) Dan Long Short-Term Memory (LSTM),” Thesis, Universitas Pakuan, Bogor, 2024.
M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short-Term Memory (LSTM) Untuk Prediksi Curah Hujan Kota Malang,” REPOSITOR, vol. 2, no. 3, pp. 331–338, 2020.
R. F. Firdaus and I. V. Paputungan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory,” Journal of Innovative Research, vol. 2, no. 3, pp. 453–460, Nov. 2022, doi: 10.54082/jupin.99.
M. M. Muhtadi, M. D. Friyadi, and A. Rahmani, “Analisis Pengujian Graphical User Interface E-Commerce Dengan Menggunakan Katalon Studio,” Sentik, Vol. 5, No. 1, 2021.