Classification of Rice Seedling Structures Using ResNet-50 with Data Augmentation and K-fold Cross Validation

Main Article Content

Nanda Bagus Pratama
Rico Andrian
Agustiansyah Agustiansyah
Admi Syarif

Abstract

This study evaluates the efficacy of a Convolutional Neural Network (CNN) with ResNet-50 architecture for classifying rice seedling structures into three categories: normal sprouts, abnormal sprouts, and dead seeds. A dataset of 400 images was collected from the Seed Science and Plant Breeding Laboratory, augmented to 1600 images using horizontal flip, pad-crop, and rotation techniques. The model was trained using the Adam optimizer (learning rate=0.001) over 10 epochs and validated with 10-fold cross-validation. Results demonstrated significant accuracy improvements; the baseline model achieved 82.50% accuracy, while the augmented model reached 93.75%. Incorporating k-fold cross-validation further enhanced performance to 92.25% (no augmentation) and 99.67% (with augmentation). These findings underscore the importance of data augmentation in reducing overfitting and improving generalization for image classification.

Article Details

How to Cite
Pratama, N. B., Andrian, R., Agustiansyah, A., & Syarif, A. (2025). Classification of Rice Seedling Structures Using ResNet-50 with Data Augmentation and K-fold Cross Validation. Jurnal Pepadun, 6(1), 10–20. https://doi.org/10.23960/pepadun.v6i1.258

References

A. A. Prasetia, S. Jazilah, and U. Badrudin, "Pengaruh sistem tanam terhadap pertumbuhan dan produksi beberapa varietas tanaman padi (Oryza sativa L.)," Biofarm: Jurnal Ilmiah Pertanian, vol. 18, no. 1, pp. 53–60, 2022, doi: 10.31941/biofarm.v18i1.1887.

International Seed Testing Association (ISTA), Handbook for Seedling Evaluation, 4th ed. Bassersdorf, Switzerland: ISTA, 2018.

W. Wu, L. Huo, G. Yang, X. Liu, and H. Li, "Research into the application of ResNet in soil: A review," Agriculture, vol. 15, no. 6, pp. 1–29, 2025, doi: 10.3390/agriculture15060661.

M. Razavi, S. Mavaddati, Z. Kobti, and H. Koohi, “Rice-ResNet: Rice classification and quality detection by transferred ResNet deep model,” Software Impacts, vol. 20, 100654, May 2024, doi: 10.1016/j.simpa.2024.100654.

K. Shaheed, I. Qureshi, F. Abbas, S. Jabbar, Q. Abbas, H. Ahmad, and M. Z. Sajid, “EfficientRMT-Net—An Efficient ResNet-50 and Vision Transformers Approach for Classifying Potato Plant Leaf Diseases,” Sensors, vol. 23, no. 23, art. no. 9516, 2023, doi: 10.3390/s23239516.

B. Tugrul, E. Elafatimi, and R. Eryigit, "Convolutional neural networks in detection of plant leaf diseases: A review," Agriculture, vol. 12, no. 8, pp. 1–21, 2022, doi: 10.3390/agriculture12081192.

S. Mehnaz and M. T. Islam, “Rice leaf disease detection: A comparative study between CNN, transformer and non-neural network architectures,” arXiv preprint, arXiv:2501.06740, Jan. 2025, doi: 10.48550/arXiv.2501.06740..

T. T. Nguyen, V. N. Hoang, T. L. Le, T. H. Tran, and H. Vu, “A vision based method for automatic evaluation of germination rate of rice seeds,” in Proc. Int. Conf. Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6, 2018, doi: 10.1109/MAPR.2018.8337511.

M. Koklu, I. Cinar, and Y. S. Taspinar, “Classification of rice varieties with deep learning methods,” Comput. Electron. Agric., vol. 187, p. 106285, 2021, doi: 10.1016/j.compag.2021.106285.

M. S. A. M. Al-Gaashani, N. Abdel Samee, R. Alnashwan, and M. S. A. Muthanna, “Using a ResNet-50 with a kernel attention mechanism for rice disease diagnosis,” Life, vol. 13, no. 6, p. 1277, 2023, doi: 10.3390/life13061277.

S. Lee and S. Lee, “Efficient data augmentation methods for crop disease recognition in sustainable environment systems,” Big Data Cogn. Comput., vol. 9, no. 1, 2025, doi: 10.3390/bdcc9010008.

H. M. Faisal, M. Aqib, K. Mahmood, M. S. A. M. Al-Gaashani, N. A. Samee, and R. Alnashwan, “Detection of cotton crops diseases using customized deep learning model,” Scientific Reports, vol. 15, art. no. 10766, 2025, doi: 10.1038/s41598-025-94636-4.

H. M. Yusuf, S. A. Yusuf, A. H. Abubakar, M. Abdullahi, and I. H. Hassan, “A systematic review of deep learning techniques for rice disease recognition: Current trends and future directions,” Franklin Open, vol. 8, 100154, 2024, doi: 10.1016/j.fraope.2024.100154.

M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artificial Intelligence in Agriculture, vol. 9, pp. 22–35, 2023, doi: 10.1016/j.aiia.2023.07.001.

N. Nitin, S. Gupta, and F. Bovand, “Developing precision agriculture using data augmentation framework for automatic identification of castor insect pests,” Frontiers in Plant Science, vol. 14, 2023, doi: 10.3389/fpls.2023.1101943.

Y. M. Alsakar, N. A. Sakr, and M. Elmogy, “An enhanced classification system of various rice plant diseases based on multi-level handcrafted feature extraction technique,” Scientific Reports, vol. 14, no. 1, p. 30601, 2024, doi: 10.1038/s41598-024-81143-1.

R. Zhang, B. Zhou, C. Lu, and M. Ma, "The performance research of the data augmentation method for image classification," Mathematical Problems in Engineering, vol. 2022, Article ID 2964829, pp. 1–10, 2022, doi: 10.1155/2022/2964829.

R. Kohavi, and F. Provost, “Glossary of terms: Special issue on applications of machine learning and the knowledge discovery process,” Machine Learning, vol. 30, no. 2, pp. 271-274, 1998, doi: 10.1023/A:1017181826899.

D. Wilimitis and C. G. Walsh, “Practical considerations and applied examples of cross validation for model development and evaluation in health care,” J. Med. Internet Res., vol. 2, p. e49023, 2023, doi: 10.2196/49023.

U. Imran, A. Waris, M. Nayab, and U. Shafiq, “Examining the impact of different K-values on the performance of multiple algorithms in K-fold cross validation,” in Proc. Int. Conf. Digital Futures and Transformative Technologies (ICoDT2), 2023, pp. 1–4, doi: 10.1109/ICoDT2.2023.259378.

Y. Zou, L. Zhang, C. Liu, B. Wang, Y. Hu, and Q. Chen, “Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections,” Optics and Laser Engineering, vol. 146, p. 106717, 2021, doi: 10.1016/j.optlaseng.2021.106717.

S. Tammina, “Transfer learning using VGG-16 with deep learning,” International Journal of Scientific and Research Publications, vol. 9, no. 10, pp. 143–150, 2019, doi: 10.29322/IJSRP.9.10.2019.p9420.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.

N. Sharma, V. Jain, and A. Mishra, “An analysis of convolutional neural networks for image classification,” Procedia Computer Science, vol. 132, pp. 377–384, 2018, doi: 10.1016/j.procs.2018.05.198.

N. Jiménez, S. Orellana, B. Mazon-Olivo, W. Rivas-Asanza, and I. Ramírez-Morales, “Detection of leaf diseases in banana crops using deep learning techniques,” Artificial Intelligence, vol. 6, no. 3, p. 61, 2025, doi: 10.3390/ai6030061.

N. Ali, A. Mohammed, A. Bais, J. S. Sangha, Y. Ruan, and R. D. Cuthbert, “LodgeNet: An automated framework for precise detection and classification of wheat lodging severity levels in precision farming,” Frontiers in Plant Science, vol. 14, p. 1255961, 2023, doi: 10.3389/fpls.2023.1255961.