Sentiment Analysis on Jobseekers Application in Google Play Store (KitaLulus)

Main Article Content

Muhamad Arrozi Irfan Hairullah
Dewi Asiah Shofiana
Rahman Taufik
Admi Syarif

Abstract

Sentiment analysis on user reviews of the KitaLulus application in Google Play Store aims to assess user feedback and classify sentiment into positive and negative categories. This study applies and compares the performance of Support Vector Machine (SVM) and Naïve Bayes classifiers in sentiment classification. Data was collected using the Google-Play-Scraper API, yielding 16,488 reviews, which underwent preprocessing, including case folding, tokenization, stopword removal, and lemmatization. The dataset was divided into training (80%), validation (5-fold cross-validation), and testing (20%) sets. During validation, the training data was further split, using 64% for training and 16% for validation in each iteration. The results indicate that SVM outperforms Naïve Bayes, achieving 93.99% accuracy, 97% precision, 92% recall, and an F1-score of 94%, while Naïve Bayes achieves 89.89% accuracy, 94% precision, 87% recall, and an F1-score of 90%. These findings demonstrate that SVM provides a more balanced classification performance, making it a more suitable approach for sentiment analysis in this context. This research contributes to a better understanding of user sentiment and provides valuable insights for improving the KitaLulus application.

Article Details

How to Cite
Hairullah, M. A. I., Shofiana, D. A., Taufik, R., & Syarif, A. (2025). Sentiment Analysis on Jobseekers Application in Google Play Store (KitaLulus). Jurnal Pepadun, 6(1), 47–56. https://doi.org/10.23960/pepadun.v6i1.262

References

M. R. Akbar, “Perkembangan yang Pesat dan Tantangan yang Dihadapi oleh Perbankan Digital di Indonesia,” Ecobankers, vol. 4, pp. 95-111, 2023.

R. R. Putra, “Pemanfaatan Blockchain Bagi Akademisi Dalam Menyambut Bonus Demografi,” Cross-border, vol. 5, no. 1, pp. 1-11, 2022.

Z. Zakiyuddin, F. Reynaldi, F. Luthfi, S. Sriwahyuni, and F. Ilhamsyah, “Dampak Gadget pada Anak Usia Remaja di SMP Negeri 02 Meureubo Kecamatan Meureubo Kabupaten Aceh Barat,” J. Pengabdi. Masy. Darma Bakti Teuku Umar, vol. 2, no. 1, p. 161, 2020, doi: 10.35308/baktiku.v2i1.1978.

N. K. C. Dewi, I. B. G. Anandita, K. J. Atmaja, and P. W. Aditama, “Rancang Bangun Aplikasi Mobile Siska Berbasis Android,” SINTECH (Science Inf. Technol. J., vol. 1, no. 2, pp. 100-107, 2018.

P. Kaur and S. Sharma, “Google Android a Mobile Platform,” 2013 Eighth Int. Conf. Broadband, Wirel. Comput. Commun. Appl., pp. 1-5, 2014.

M. D. Pamungkas and H. Februariyanti, “Penerapan Algoritma K-Means Clustering Untuk Mengelompokan Data Review Barang Pada E-Commerce Lazada,” semanTIK, vol. 8, no. 2, p. 99, 2022, doi: 10.55679/semantik.v8i2.29058.

M. Izunnahdi, G. Aburrahman, and A. E. Wardoyo, “Sentimen Analisis Pada Data Ulasan Aplikasi KAI Access Di Google PlayStore Menggunakan Metode Multinomial Naive Bayes Sentiment Analysis on KAI Access Application Review Data on Google PlayStore Using Multinomial Naive Bayes Method,” J. Smart Teknol., vol. 4, no. 2, pp. 2774-1702, 2023

S. Fransiska and A. I. Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and SVM Method,” Sci. J. Informatics, vol. 7, no. 2, pp. 2407-7658, 2020.

B. A. Habsy, “Seni Memehami Penelitian Kuliatatif Dalam Bimbingan dan Konseling: Studi Literatur,” JURKAM J. Konseling Andi Matappa, vol. 1, no. 2, p. 90, 2017.

A. Nur, A. Zulkifli, and N. A. Shafie, “Review of the Lazada application on Google Play Store: Sentiment Analysis,” J. Comput. Res. Innov., vol. 9, no. 1, p. 2024, 2024.

L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ. Res. Methods, vol. 25, no. 1, pp. 114-146, 2022, doi: 10.1177/1094428120971683.

A. S. Hussein, T. Li, C. W. Yohannese, and K. Bashir, “A-SMOTE: A new preprocessing approach for highly imbalanced datasets by improving SMOTE,” Int. J. Comput. Intell. Syst., vol. 12, no. 2, pp. 1412-1422, 2019, doi: 10.2991/ijcis.d.191114.002.

A. Fernández, S. García, F. Herrera, and N. V. Chawla, “SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” J. Artif. Intell. Res., vol. 61, pp. 863-905, 2018, doi: 10.1613/jair.1.11192.

D. Berrar, “Cross-Validation,” in Reference Module in Life Sciences, pp. 1-13, 2024. doi: 10.1016/B978-0-323-95502-7.00032-4.

F. Akbar, “Penerapan Algoritma Naïve Bayes Untuk Mengetahui Pasien Penyakit Gagal Jantung,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 2, no. 2, pp. 263-266, 2022.

M. R. Handoko, “Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode Naive Bayes Berbasis Web,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 50-58, 2021

D. A. Pisner and D. M. Schnyer, Support vector machine. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-815739-8.00006-7.