Determining the Shortest Tour Location of Tourist Attractions in Bandar Lampung Using Cheapest Insertion Heuristic (CIH) and Modified Sollin Algorithm

Main Article Content

Abdi Restu Dinata
Wamiliana Wamiliana
Muslim Ansori
Fitriani Fitriani
Notiragayu Notiragayu

Abstract

The travel and tourism industry play important role in economics. Like various urban areas on the island of Sumatra which is famous for its tourist destinations, the city of Bandar Lampung is one of the tourist destinations for urban communities on the island of Sumatra because it has many cultural tourist attractions that tourists can visit. With so many choices of tourist destinations, tourists will definitely think about considering the time and costs as efficiently as possible to visit the available tourist attractions. Therefore, it is necessary to take the shortest tour so that it can save time and costs. This problem is known as the Traveling Salesman Problem (TSP).  In this study the Cheapest Insertion Heuristic and Modified Sollin Algorithm are used to solve the problem. The results obtained show that the solution using the modified Sollin Algorithm is better than the Cheapest Insertion Heuristic.

Article Details

How to Cite
Dinata, A. R., Wamiliana, W., Ansori, M., Fitriani, F., & Notiragayu, N. (2025). Determining the Shortest Tour Location of Tourist Attractions in Bandar Lampung Using Cheapest Insertion Heuristic (CIH) and Modified Sollin Algorithm. Jurnal Pepadun, 6(1), 92–102. https://doi.org/10.23960/pepadun.v6i1.265

References

A. Gohil, M. Tayal, T. Sahu, & V. Sawalpurkar, “Travelling Salesman Problem: Parallel Implementations & Analysis”, arXiv preprint arXiv:2205.14352, 2022.

E. L. Lawler, “The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization”. John Wiley & Sons, 1985.

M. Kurniawan, F. Farida, & S. Agustini, “Rute Terpendek Algoritma Particle Swarm Optimization dan Brute Force untuk Optimasi Travelling Salesman Problem”, Jurnal Teknik Informatika, 14(2), pp. 191-200, 2021.

S. Violina, “Analysis of Brute Force and Branch & Bound Algorithms to solve the Traveling Salesperson Problem (TSP)”, Turkish Journal of Computer and Mathematics Education, 12(8), pp. 1226-1229, 2021.

A. Wilson. , Y. Sibaroni, & I. Ummah, “Analisis Penyelesaian Traveling Salesman Problem Dengan Metode Brute Force Menggunakan Graphic Processing Unit”, 2(1), pp. 1874-1883, 2015.

M. Amelia, I. I. Sholeha, Y. R. Revangga, & Wamiliana, “The Comparison of Brute Force, Cheapest-Insertion, and Nearest-Neighbor Heuristics for Determining the Shortest Tour for Visiting Malls in Bandar Lampung”, EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, 14(1), pp. 51-54, 2024, doi: http://dx.doi.org/10.36448/expert.v14i1.3715.

S. Hougardy & Wilde, “On the nearest neighbour rule for the metric traveling salesman problem”, Discrete Applied Mathematics, 195, pp. 101-103, 2015.

Winda A. F. B, S. R. Sumardi, N. N. Sari, & J. E. Simarmata, “Product Distribution Route using Nearest Neighbor Algorithm”, MALCOM: Indonesian Journal of Machine Learning and Computer Science”, 4(3), pp: 894-900, 2024.

M. Y. Aswin, Wamiliana, Fitriani, M.Ansori, & Notiragayu, “Perbandingan Cheapest Insertion Heuristic dan Algoritma Christofides untuk Menentukan Tour Pasar Tradisional di Kota Bandar Lampung”, Jurnal Pepadun, 5(2), pp. 182-194, 2024.

L. V. Hignasari L & E.D. Mahira, “Optimization of Goods Distribution Route Assisted by Google Map with Cheapest Insertion Heuristic Algorithm (CIH)”, Jurnal Sinergi, 22(2), pp. 132-38, 2018.

K Meliantri, Githa, P. & N. K. A. Wirdiani, “Optimasi Distribusi Produk Menggunakan Metode Cheapest Insertion Heuristic Berbasis Web”, Jurnal Jurusan Teknologi Informasi, 6(3), pp. 204-213, 2018.

G. R. Utomo, S.D. Maylawati, & N. C. Alam, ”Implementasi Algoritma Cheapest Insertion Heuristic (CIH) dalam Penyelesaian Travelling Salesman Problem (TSP)”. Jurnal Online Informatika, 3(1), pp. 61- 67, 2018.

Kusrini & J. E. Istiyanto, ”Penyelesaian Travelling Salesman Problem Dengan Algoritma Cheapest Insertion Heuristics dan Basis Data”, Jurnal Informatika University Petra Kristian, 8(2), pp. 109-114, 2007.

F. J. Tjoea, & S. Halim, “Evaluasi Rute Pelayaran Kapal dengan Pendekatan Modified Minimum Spanning Tree”, Jurnal Titra, 11(2), pp. 265-272, 2023.

Wamiliana,”Minimum Spanning Tree dan Desain Jaringan”, Pustaka Media, Bandar Lampung, 2022.