A Comparative Study of CNN Architectures: ConvNeXt, MobileNetV3, and EfficientNet for Oral Disease Diagnosis

Main Article Content

Ferli Malkan Amien
Didik Kurniawan
Akmal Junaidi
Bambang Hermanto

Abstract

Oral diseases are a global health issue affecting billions of people worldwide. Early detection using artificial intelligence technology, particularly Convolutional Neural Networks (CNN), can enhance the accuracy of oral disease diagnosis. This study compares the performance of three CNN architectures—ConvNeXt Tiny, MobileNetV3 Large, and EfficientNet B0—in classifying oral diseases based on a medical image dataset. The evaluation considers accuracy, computational efficiency, and processing time. The results show that EfficientNet B0 achieved the highest accuracy (98.21%) with fewer parameters than ConvNeXt Tiny. However, ConvNeXt Tiny demonstrated the best absolute accuracy (96.96%) despite higher computational resource consumption. MobileNetV3 Large exhibited high efficiency in parameter usage with competitive accuracy (96.44%). Thus, the choice of CNN architecture depends on the trade-off between high accuracy and computational efficiency in clinical implementation.

Article Details

How to Cite
Amien, F. M., Kurniawan, D., Junaidi, A., & Hermanto, B. (2025). A Comparative Study of CNN Architectures: ConvNeXt, MobileNetV3, and EfficientNet for Oral Disease Diagnosis. Jurnal Pepadun, 6(1), 81–91. https://doi.org/10.23960/pepadun.v6i1.267

References

Institute for Health Metrics and Evaluation (IHME), “Global Burden of Disease Collaborative Network Global burden of disease study 2019 (GBD 2019) results,” 2020.

World Health Organization, “Global oral health status report: Towards universal health coverage for oral health by 2030,” 2022.

Z. Cao, J. Huang, X. He, and Z. Zong, “BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images,” Knowl Based Syst, vol. 258, Dec. 2022, doi: 10.1016/j.knosys.2022.110040.

A. Ahmed, D. Velayudhan, T. Hassan, M. Bennamoun, E. Damiani, and N. Werghi, “Enhancing security in X-ray baggage scans: A contour-driven learning approach for abnormality classification and instance segmentation,” Eng Appl Artif Intell, vol. 130, p. 107639, Apr. 2024, doi: 10.1016/j.engappai.2023.107639.

D. R. Beddiar, M. Oussalah, U. Muhammad, and T. Seppänen, “A Deep learning based data augmentation method to improve COVID-19 detection from medical imaging,” Knowl Based Syst, vol. 280, Nov. 2023, doi: 10.1016/j.knosys.2023.110985.

P. Fawaz, P. El Sayegh, and B. Vande Vannet, “What is the current state of artificial intelligence applications in dentistry and orthodontics?,” J Stomatol Oral Maxillofac Surg, vol. 124, no. 5, p. 101524, Oct. 2023, doi: 10.1016/j.jormas.2023.101524.

M. Vodanovic, M. Subasic, D. Milosevic, and I. Savic Pavicin, “Artificial Intelligence in Medicine and Dentistry,” Acta Stomatol Croat, vol. 57, no. 1, pp. 70-84, Mar. 2023, doi: 10.15644/asc57/1/8.

Y. Kasnanda Bintang and H. Imaduddin, “Pengembangan Model Deep Learning untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning,” Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, vol. 9, no. 3, pp. 1442-1455, 2024, doi: 10.29100/jipi.v9i3.5588.

F. Carrillo-Perez, O. E. Pecho, J. C. Morales, R. D. Paravina, A. D. Bona, R. Ghinea, R. Pulgar, M. del Mar Perez, L. J. Herrera, “Applications of artificial intelligence in dentistry: A comprehensive review,” Journal of Esthetic and Restorative Dentistry, vol. 34, no. 1, pp. 259-280, Jan. 2022, doi: 10.1111/jerd.12844.

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the 2020s,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.03545

A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, H. Adam, “Searching for MobileNetV3,” May 2019, [Online]. Available: http://arxiv.org/abs/1905.02244

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” May 2019, [Online]. Available: http://arxiv.org/abs/1905.11946

N.S. Piyarathne, S.N. Liyanage, R.M.S.G.K. Rasnayaka, P.V.K.S. Hettiarachchi, G.A.I. Devindi, F.B.A.H. Francis, D.M.D.R. Dissanayake, R.A.N.S. Ranasinghe, M.B.D. Pavithya, I.B. Nawinne, R.G. Ragel, and R.D. Jayasinghe, “A comprehensive dataset of annotated oral cavity images for diagnosis of oral cancer and oral potentially malignant disorders,” Oral Oncol, vol. 156, Sep. 2024, doi: 10.1016/j.oraloncology.2024.106946.

H. Mason and C. Wiggins, “A Taxonomy of Data Science.” Accessed: Sep. 19, 2024. [Online]. Available: https://web.archive.org/web/20160220042455/dataists.com/2010/09/a-taxonomy-of-data-science/

C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text Data Augmentation for Deep Learning,” J Big Data, vol. 8, no. 1, p. 101, Dec. 2021, doi: 10.1186/s40537-021-00492-0.

A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, Dec. 2022, doi: 10.1016/j.array.2022.100258.

J. Chen, S. Kao, H. He, W. Zhuo, S. Wen, and C. H. Lee, “Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [Online]. Available: https://doi.org/10.1109/CVPR52729.2023.01157.