Sentiment Analysis of Gamification in E-Commerce Applications Using a Hybrid CNN-LDA
Main Article Content
Abstract
This study investigates public sentiment toward gamification features in e-commerce platforms, focusing on user opinions expressed on social media platform X. As gamification strategies like Shopee Candy and Tokopedia Quiz become more common, understanding user perceptions is crucial for improving user experience. This research adopts a hybrid approach using Convolutional Neural Network (CNN) for sentiment classification and Latent Dirichlet Allocation (LDA) for topic modeling. A total of 765 user comments were collected using Tweet Harvest and processed through standard text preprocessing techniques. The CNN model achieved strong performance, with 81% accuracy, 86% precision, 89% recall, and an F1-score of 88%. LDA analysis revealed key terms in each sentiment group—positive sentiments centered on words like “menang” and “hibur,” while negative sentiments included “scam” and “capithaha.” The results demonstrate the effectiveness of combining CNN and LDA for analyzing sentiment and extracting dominant themes in informal online discussions. These insights can guide e-commerce platforms in refining gamification strategies that align with user expectations, helping to enhance engagement while addressing user concerns.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
V. Jain, B. Malviya, and S. Arya, “An Overview of Electronic Commerce (e-Commerce),” J. Contemp. Issues Bus. Gov., vol. 27, no. 3, 2021, doi: 10.47750/cibg.2021.27.03.090.
D. A. Harahap, “Perilaku Belanja Online Di Indonesia: Studi Kasus,” JRMSI - J. Ris. Manaj. Sains Indones., vol. 9, no. 2, pp. 193-213, 2018, doi: 10.21009/jrmsi.009.2.02.
S. C. Gupta and N. Goyal, “Text Mining: Techniques, Applications and Issues,” vol. 7, no. 11, pp. 283-289, 2024, doi: 10.55524/csistw.2024.12.1.49.
A. Firdaus, W. I. Firdaus, P. Studi, T. Informatika, M. Digital, and P. N. Sriwijaya, “Text Mining,” vol. 13, no. 1, pp. 66-78, 2021. F. Huseynov, “Gamification in E-Commerce,” no. January 2020, pp. 144-161, 2020, doi: 10.4018/978-1-7998-5171-4.ch008.
Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review of gamification research, International Journal of Information Management, 45, 2019, 191-210.
A. Behl, P. Sheorey, A. Pal, A. Veetil, and S. Singh, "Gamification in E-Commerce: A Comprehensive Review of Literature," J. Electron. Commerce Organ., vol. 18, pp. 1-16, 2020, doi: 10.4018/JECO.2020040101.
M. N. Athoillah and A. Hidayat, “Analysis Of The Role Of Gamification In Influence Shopping Engagement: Shopee E-Commerce Case Study,” vol. 03, no. 04, pp. 212-229.
N. S. Jayawardena, M. Ross, S. Quach, A. Behl, M. Gupta, and L. D. Lang, “Effective Online Engagement Strategies Through Gamification: A Systematic Literature Review and a Future Research Agenda,” J. Glob. Inf. Manag., vol. 30, no. 5, pp. 1-25, 2022, doi: 10.4018/JGIM.290370.
P. Mehta and S. Pandya, “A review on sentiment analysis methodologies, practices and applications,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 601-609, 2020.
F. Zamachsari, Gabriel Vangeran Saragih, Susafa’ati, and Windu Gata, “Analysis of Sentiment of Moving a National Capital with Feature Selection Naive Bayes Algorithm and Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, pp. 504-512, 2020, doi: 10.29207/resti.v4i3.1942.
A. Machmud, B. Wibisono, and N. Suryani, “Analisis Sentimen Cyberbullying Pada Komentar X Menggunakan Metode Naïve Bayes,” vol. 5, no. 1, 2025.
H. Handoko, A. Asrofiq, J. Junadhi, and A. S. Negara, “Sentiment Analysis of Sirekap Tweets Using CNN Algorithm,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 8, no. 2, pp. 312-329, 2024, doi: 10.29407/intensif.v8i2.23046.
H. Hoiriyah, H. Mardiana, M. Walid, and A. K. Darmawan, “Lexicon-Based and Naive Bayes Sentiment Analysis for Recommending the Best Marketplace Selection as a Marketing Strategy for MSMEs,” J. Pilar Nusa Mandiri, vol. 19, no. 2, pp. 65-76, 2023, doi: 10.33480/pilar.v19i1.4176.
P. Chaudhari and C. Chandankhede, “Literature survey of sarcasm detection,” Proc. 2017 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017, vol. 2018-January, no. March 2017, pp. 2041-2046, 2017, doi: 10.1109/WiSPNET.2017.8300120.
F. N. Hikmah, S. Basuki, and Y. Azhar, “Deteksi Topik Tentang Tokoh Publik Politik Menggunakan Latent Dirichlet Allocation (LDA),” J. Repos., vol. 2, no. 4, pp. 415-426, 2020, doi: 10.22219/repositor.v2i4.52.
J. Y. Kim and C. K. Lim, “The Use of Sentiment Analysis and Latent Dirichlet Allocation Topic-Modeling (LDA) on Web Novel Content Quality Factor,” J. Syst. Manag. Sci., vol. 12, no. 2, pp. 242-257, 2022, doi: 10.33168/JSMS.2022.0211.
E. Budiarto, R. Rino, S. Hariyanto, and D. Susilawati, “Penerapan Data Mining Untuk Rekomendasi Beasiswa Pada SD Maria Mediatrix Menggunakan Algoritma C4.5,” Algor, vol. 3, no. 2, pp. 23-34, Mar. 2022, doi: 10.31253/algor.v3i2.1019.
M. Singh, M. S. Kanroo, H. S. Kawoosa, and P. Goyal, “Towards accessible chart visualizations for the non-visuals: Research, applications and gaps,” Computer Science Review, vol. 48. Elsevier Ireland Ltd, May 01, 2023, doi: 10.1016/j.cosrev.2023.100555.
R. N. Ilyas, S. Mulyani, S. Wiguna, and M. Ramli, “Penggunaan Crawling Data X Dengan Menggunakan Tweet,” no. September 2022, pp. 851-856, 2024.
A. P. Joshi and B. V. Patel, “Data Preprocessing: The Techniques for Preparing Clean and Quality Data for Data Analytics Process,” Orient. J. Comput. Sci. Technol., vol. 13, no. 0203, pp. 78-81, 2021, doi: 10.13005/ojcst13.0203.03.
M. A. Al-Shabi, “Evaluating the performance of the most important Lexicons used to Sentiment analysis and opinions Mining,” Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 1, pp. 51-57, 2020, [Online]. Available: http://sentiwordnet.isti.cnr.it/.0
D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24-33, 2021, doi: 10.57152/malcom.v1i1.20.
I. M. T. Mas and A. E. Karyawati, “Aspect Based Sentiment Analysis Terhadap Ulasan Produk Skincare di E-Commerce Menggunakan CNN-LSTM,” vol. 3, pp. 261-270, 2025.
P. A. Aritonang, M. E. Johan, and I. Prasetiawan, “Aspect-Based Sentiment Analysis on Application Review using CNN (Case Study: Peduli Lindungi Application),” Ultim. Infosys J. Ilmu Sist. Inf., vol. 13, no. 1, pp. 54-61, 2022.
A. Al-Sabaawi, H. M. Ibrahim, Z. M. Arkah, M. Al-Amidie, and L. Alzubaidi, “Amended Convolutional Neural Network with Global Average Pooling for Image Classification,” pp. 171-180, 2021, doi: 10.1007/978-3-030-71187-0_16.
[D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55-63, 2021, doi: 10.25126/justsi.v2i1.24.
S. Urologin, “Sentiment analysis, visualization and classification of summarized news articles: A novel approach,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 8, pp. 616-625, 2018, doi: 10.14569/ijacsa.2018.090878.
B. Paneru, B. Thapa, and B. Paneru, “Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings,” Syst. Soft Comput., vol. 7, no. September 2024, p. 200192, 2025, doi: 10.1016/j.sasc.2025.200192.
G. P. Permana, D. A. Nugraha, and H. Santoso, “Perbandingan Performa SVM dan Naïve Bayes Pada Analisis Sentimen Aplikasi Game Online,” vol. 8, no. 1, pp. 21-30, 2024.