Two-Stage Convolutional Neural Network (CNN) Architectures for Breast Cancer Image Classification
Main Article Content
Abstract
Breast cancer remains one of the most common and deadly diseases among women globally. Early detection significantly increases the chances of patient recovery. The main objective of this research is to evaluate the performance of three Convolutional Neural Network (CNN) architectures, namely ResNet50, VGG16, and DenseNet201, for breast cancer image classification. In this study, there are two classification stages used: the first is to differentiate between normal and abnormal images, and the second is to distinguish between benign and malignant tumors. The dataset was obtained through the Kaggle website. It was then pre-processed using normalization and augmentation through flipping and rotation. After each CNN model was trained using transfer learning, its performance was evaluated using accuracy, precision, recall, and F1 score. In the Normal and Abnormal classification task, the DenseNet201 model outperformed other models with an accuracy of 91%. Meanwhile, ResNet50 showed the most optimal results in the Benign and Malignant classification with an accuracy of 83%.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
T. T. M. M. Khan, “Breast Tumor Detection Using Robust and Efficient Machine Learning and Convolutional Neural Network Approaches,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/6333573.
P. F. Wiliyanarti, “Kualitas Hidup Pasien Kanker Payudara “Pendekatan Health Belief Model “ - Pipit Festi Wiliyanarti - Google Buku,” 2021.
M. Diwakaran and D. Surendran, “Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks,” Inf. Technol. Control, vol. 52, no. 2, pp. 381–396, 2023, doi: 10.5755/j01.itc.52.2.33208.
A. Cruz-Roa, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, 2014. doi: 10.1117/12.2043872.
S. Pacilè, J. Lopez, P. Chone, T. Bertinotti, J. M. Grouin, and P. Fillard, “Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool,” Radiol. Artif. Intell., vol. 2, no. 6, 2020, doi: 10.1148/ryai.2020190208.
J. Liu, “Mammography diagnosis of breast cancer screening through machine learning: a systematic review and meta-analysis,” Clin. Exp. Med., vol. 23, no. 6, 2023, doi: 10.1007/s10238-022-00895-0.
M. Busaleh, M. Hussain, H. A. Aboalsamh, and Fazal-E-amin, “Breast mass classification using diverse contextual information and a convolutional neural network,” Biosensors, vol. 11, no. 11, 2021, doi: 10.3390/bios11110419.
V. Ulagamuthalvi, G. Kulanthaivel, A. Balasundaram, and A. K. Sivaraman, “Breast Mammogram Analysis and Classification Using Deep Convolution Neural Network,” Comput. Syst. Sci. Eng., vol. 43, no. 1, pp. 275–289, 2022, doi: 10.32604/csse 2022.023737.
E. Susilowati, A. T. Hapsari, M. Efendi, and P. Edi, “Diagnosa Penyakit Kanker Payudara Menggunakan Metode K - Means Clustering,” J. Sist. Informasi, Teknol. Inform. dan Komput., vol. 10, no. 1, pp. 27–32, 2019.
G. A. R. Dyanti and N. L. P. Suariyani, “faktor-faktor keterlambatan penderita kanker payudara dalam melakukan pemeriksaan awal ke pelayanan kesehatan,” J. Kesehat. Masy., vol. 11, no. 2, 2016, doi: 10.15294/kemas.v11i2.3742.
F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A Dataset for Breast Cancer Histopathological Image Classification,” IEEE Trans. Biomed. Eng., vol. 63, no. 7, 2016, doi: 10.1109/TBME.2015.2496264.
F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” SISTEMASI, vol. 10, no. 3, 2021, doi: 10.32520/stmsi.v10i3.1248.
M. Fauzan Novriandy, B. Rahmat, and A. Junaidi, “Klasikasi Citra Pada Penyakit Kanker Mulut Menggunakan Arsitektur Densenet201 Menggunakan Optimasi Adam Dan Sgd,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 6132–6140, 2024, doi: 10.36040/jati.v8i4.10077.
I. Idawati, D. P. Rini, A. Primanita, and T. Saputra, “Klasifikasi Kanker Payudara Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur VGG-16,” J. Sist. Komput. dan Inform., vol. 5, no. 3, p. 529, 2024, doi: 10.30865/json.v5i3.7553.
R. Nima and F. Shila, “Crack classification in rotor-bearing system by means of wavelet transform and deep learning methods: an experimental investigation,” J. Mech. Eng. Autom. Control Syst., vol. 1, no. 2, 2020, doi: 10.21595/jmeacs 2020.21799.
K. Liu, G. Kang, N. Zhang, and B. Hou, “Breast Cancer Classification Based on Fully-Connected Layer First Convolutional Neural Networks,” IEEE Access, vol. 6, 2018, doi: 10.1109/ACCESS.2018.2817593.
Y. Huang, R. Li, X. Wei, Z. Wang, T. Ge, and X. Qiao, “Evaluating Data Augmentation Effects on the Recognition of Sugarcane Leaf Spot,” Agric., vol. 12, no. 12, 2022, doi: 10.3390/agriculture12121997.
P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A review of medical image data augmentation techniques for deep learning applications,” 2021. doi: 10.1111/1754-9485.13261.
A. S. Almryad and H. Kutucu, “Automatic identification for field butterflies by convolutional neural networks,” Eng. Sci. Technol. an Int. J., vol. 23, no. 1, pp. 189–195, 2020, doi: 10.1016/j.jestch.2020.01.006.
S. R. and J. S. K. He, X. Zhang, “‘Deep Residual Learning for Image Recognition,’ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778. doi: 10.1109/CVPR.2016.90,” 2016 IEEE Conf. Comput. Vis. Pattern Recognit., 2016.
N. D. Miranda, L. Novamizanti, and S. Rizal, “convolutional neural network pada klasifikasi sidik jari menggunakan resnet-50,” J. Tek. Inform., vol. 1, no. 2, 2020, doi: 10.20884/1.jutif.2020.1.2.18.
K. Bhosle and V. Musande, “Evaluation of CNN model by comparing with convolutional autoencoder and deep neural network for crop classification on hyperspectral imagery,” Geocarto Int., vol. 37, no. 3, 2022, doi: 10.1080/10106049.2020.1740950.
O. Caelen, “A Bayesian interpretation of the confusion matrix,” Ann. Math. Artif. Intell., vol. 81, no. 3–4, 2017, doi: 10.1007/s10472-017-9564-8.
V. Kotu and B. Deshpande, Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner. 2014. doi: 10.1016/C2014-0-00329-2.
A. Vanacore, M. S. Pellegrino, and A. Ciardiello, “Fair evaluation of classifier predictive performance based on binary confusion matrix,” Comput. Stat., vol. 39, no. 1, 2024, doi: 10.1007/s00180-022-01301-9.