KLASIFIKASI KEJADIAN HIPERTENSI DENGAN METODE SUPPORT VECTOR MACHINE (SVM) MENGGUNAKAN DATA PUSKESMAS DI KOTA BANDAR LAMPUNG

Main Article Content

Indah Pasaribu
Favorisen Rosyking Lumbanraja
Dewi Asiah Shofiana
Aristoteles Aristoteles

Abstract

Hypertension is a condition in which a person experiences an increase in blood pressure above the normal value which causes pain and even death. Normal human blood pressure is 120/80 mmHg. Patients with hypertension cannot be cured, but prevention and control can be done. The hypertension cases are always increasing in Indonesia. The Bandar Lampung City Health Service stated that hypertension is a disease that always ranks in the top ten diseases in Bandar Lampung City. Diagnosis of hypertension is currently manually performed by requiring a lot of energy, materials, and time. Based on the condition, there is an idea to apply the field of biomedical data analysis to help diagnosing hypertension using the support vector machine (SVM) method in Bandar Lampung City. This study classifies and measures the accuracy of the support vector machine method in hypertension. The data comes from five health centers in Bandar Lampung City from 2017 to 2019 with 10-fold cross validation data sharing. The kernels used are linear, gaussian, and polynomial kernels. This study successfully classifies hypertension sufferers in Bandar Lampung City. The result of the highest feature correlation analysis is 0.90. The results of the classification using the support vector machine method get the highest accuracy, which is 99.78% on the gaussian kernel.

Article Details

How to Cite
Pasaribu, I., Lumbanraja, F. R., Shofiana, D. A., & Aristoteles, A. (2021). KLASIFIKASI KEJADIAN HIPERTENSI DENGAN METODE SUPPORT VECTOR MACHINE (SVM) MENGGUNAKAN DATA PUSKESMAS DI KOTA BANDAR LAMPUNG. Jurnal Pepadun, 2(2), 183–190. https://doi.org/10.23960/pepadun.v2i2.56

References

Herwati & W. Sartika, "Terkontrolnya Tekanan Darah Penderita Hipertensi Berdasarkan Pola Diet dan Kebiasaan Olah Raga di Padang Tahun 2011," Jurnal Kesehatan Masyarakat, vol. 8, no. 1, pp. 8-14, 2014.

Y. Susilo & A. Wulandari, Cara Jitu Mengatasi Hipertensi, Yogyakarta: ANDI, 2011.

Kementerian Kesehatan Republik Indonesia, "Hasil utama Riset Kesehatan Dasar (Riskesdas)," Badan Litbangkes Kementerian Kesehatan RI, Jakarta Pusat, 2018.

R. Samant & S. Rao, "A study on Comparative Performance of SVM Classifier Models with Kernel Functions in Prediction of Hypertension," (IJCSIT) International Journal of Computer Science and Information Technologies, vol. 4, no. 6, pp. 818-821, 2013.

B. L. Yudha, L. Muflikhah & R. C. Wihandika, "Klasifikasi Risiko Hipertensi Menggunakan Metode Neighbor Weighted K-Nearest Neighbor (NWKNN)," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 2, pp. 897-904, 2018.

M. R. Andriansyah, E. Santoso & Sutrisno, "Klasifikasi Risiko Hipertensi Menggunakan Fuzzy Decision Tree Iterative Dichotomiser 3 (ID3)," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 12, pp. 7088-7096, 2018.

F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi & J. Akinjobi, "Supervised Machine Learning Algorithms: Classification and Comparison," International Journal of Computer Trends and Technology (IJCTT), vol. 48, no. 3, pp. 128-138, 2017.

N. H. Farhat, "Photonic Neural Networks and Learning Machines," IEEE Expert, vol. 7, no. 5, pp. 63- 72, 1992.

C. Vielhauer & R. Steinmetz, "Handwriting: Feature Correlation Analysis for Biometric Hashes," EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 4, pp. 542-558, 2004.

H. Liu & H. Motoda, "Feature Transformation and Subset Selection," IEEE Expert, vol. 13, no. 2, pp. 26-28, 1998.