SENTIMENT ANALYSIS PROTOKOL KESEHATAN VIRUS CORONA DARI TWEET MENGGUNAKAN WORD2VEC MODEL DAN RECURRENT NEURAL NETWORK LEARNING

Main Article Content

Ni Putu Ayu Anesca
Kurnia Muludi
Dewi Asiah Shofiana

Abstract

Sentiment analysis is a computational study of opinion from various opinions, which is part of the work that conducts a review related to the computational treatment of opinions, sentiments, and perceptions of the text. To solve various problems in sentiment analysis, needed a good text representation method. In this study, a deep learning analysis was carried out using the Recurrent Neural Network (RNN) method and the Word2Vec Model as word embedding in sentiment classification. The sentiment dataset used comes from user reviews on Twitter (tweets) on the health protocols implemented by the public from the government's appeal. The results showed that the RNN model using sigmoid activation resulted in the greatest accuracy of 66%. The training process in this test uses 10 epochs and 32 batch sizes so that the precision value for negative sentiment is 54% and for positive sentiment is 67%.

Article Details

How to Cite
Anesca, N. P. A., Muludi, K., & Shofiana, D. A. (2021). SENTIMENT ANALYSIS PROTOKOL KESEHATAN VIRUS CORONA DARI TWEET MENGGUNAKAN WORD2VEC MODEL DAN RECURRENT NEURAL NETWORK LEARNING. Jurnal Pepadun, 2(3), 432–439. https://doi.org/10.23960/pepadun.v2i3.86

References

C. Similarity, “Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm," Journal of Informatics and Telecommunication Etangineering (JITE), vol. 3, no. 2, pp. 224–231, 2020.

Kementerian Kesehatan RI, Keputusan Menteri Kesehatan Indonesia tentang protokol COVID-19, 2020.

B. Liu, “Sentiment analysis: Mining opinions, sentiments, and emotions,” Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, no. May, pp. 1–367, 2015, doi: 10.1017/CBO9781139084789.

N. Monarizqa, L. E. Nugroho, & B. S. Hantono, “Penerapan Analisis Sentimen Pada Twitter Berbahasa Indonesia Sebagai Pemberi Rating,” J. Penelit. Tek. Elektro dan Teknol. Inf., vol. 1, pp. 151–155, 2014.

T. Mikolov, M. Karafiát, L. Burget, C. Jan, & S. Khudanpur, “Recurrent neural network based language model,” Proc. 11th Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH 2010, no. September, pp. 1045–1048, 2010.

D. P. Langgeni, Z. K. A. Baizal, & Y. F. A. W, “Clustering Artikel Berita Berbahasa Indonesia,” Seminar Nasional Informatika, vol. 2010, no. semnasIF, pp. 1–10, 2010.

V. E. Jacob, A. S. M. Lumenta & A. Jacobus, Rancang Bangun Aplikasi Kemiripan Dokumen Dengan Sumber – Sumber Internet, Informatics Engineering, Sam Ratulangi University, vol. 14, no. 2, pp. 159–164, 2019, doi: 10.35793/jti.14.2.2019.23990.

M. Thomas & Latha, “Sentimental analysis using recurrent neural network,” International Journal of Engineering & Technology, vol. 7, no. 2.27, p. 88, 2018, doi: 10.14419/ijet.v7i2.27.12635.

B. Jang, I. Kim, & J. W. Kim, “Word2vec convolutional neural networks for classification of news articles and tweets,” PLoS One, vol. 14, no. 8, pp. 1–20, 2019, doi: 10.1371/journal.pone.0220976.

W. K. Sari, D. P. Rini, R. F. Malik, & I. S. B. Azhar, “Klasifikasi Teks Multilabel pada Artikel Berita Menggunakan Long Short-Term Memory dengan Word2Vec,” JURNAL RESTI, vol. 1, no. 10, pp. 276–285, 2021.

E. Prasetyo, Data Mining : Konsep Dan Aplikasi Menggunakan Matlab, Yogyakarta: Andi, 2012.

E. Kouloumpis, T. Wilson, & J. Moore, “Twitter Sentiment Analysis: The Good the Bad and the OMG!,” International AAAI Conference on Weblogs Social Media, 2011