IMPLEMENTASI SUPPORT VECTOR MACHINE DALAM MEMPREDIKSI HARGA RUMAH PADA PERUMAHAN DI KOTA BANDAR LAMPUNG
Main Article Content
Abstract
Machine Learning has been widely used in terms of predictions for analyzing datasets. One method of Machine Learning is Support Vector Machine (SVM). The house has an important role in the survival of human beings. With the times, many developers are competing to build housing. The purpose of this study is to predicted the housing cost using Support Vector Machine. The data in this research used the data of house in Bandar lampung, the price, the location and the building specification. The amount of data used 51 datas and 33 variables with regression and classification, also used 3 kernels and it's model, 12 times first trial and next 6 experiments done with fitur selection. The trial result was kernel regression polynomial model reached the highest R 2 that was 95,99% linear kernel and gaussian kernel reached R 2 90,99% and 81,43% each. While in accuration classification model trial is obtained in 8 class of gaussian kernel as big as 91,18%, and linear kernel and polynimonal kernel get an accuracy of 90,20% and 89,90%.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Henilane, I. (2016). “Housing Concept and Analysis of Housing Classification.” Baltic Journal of Real Estate Economics and Construction Management, Riga Technical University, 13(2) : 415-425.
Bujang, A. A., Zarin, H. A., & Jumadi, N. (2010). “The Relationship Between Demographic Factors and Housing Affordability.” Malaysian Journal of Real Estate, Universiti Teknologi Malaysia, 9, hal 2491-2521.
Mulder, C. H. (2006). “Key Note Presentation The Relationship Between Population and Housing.” Department of Geography, Planning and International Development Studies, University of Amsterdam, Vol. 3 (2), Hal. 101-114.
Eko Setyawan, Renan Subantoro, & R. P. (2016). “Analisis peramalan.” Jurnal Ilmu-Ilmu Pertanian, Universitas Wahid Hasyim Semarang, Vol. 1, No. 1 ISSN : 2301-928X.
Putro, B., Furqon, M. T., & Wijoyo, S. H. (2018). “Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Exponential Smoothing.” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Universitas Brawijaya, Vol 8, No 1, hal-11-19.
Kusumodestoni, R. H. (2017). “Komparasi Model Support Vector Machines ( Svm ) dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham.” Jurnal Informatika Upgris, Universitas Islam Nahdlatul Ulama Jepara, 2 (4), hal 22-34.
Aprilarita, Qory, “Sistem Pendukung Keputusan Pemilihan Rumah Di Wilayah Bandar Lampung Dengan Metode Simple Additive Weighting (SAW) Berbasis Android” Universitas Lampung, 2018.
Vapnik, V. N. (1992). “A Training Algorithm for Optimal Margin Classi ers.” Neural Computation, 20, 273-297.
Faraby, S. Al. (2018). “Analisis Dan Implementasi Support Vector Machine Dengan String Kernel Dalam Melakukan Klasifikasi Berita Berbahasa Indonesia Analysis and Implementation Support Vector Machine With String Kernel for Classification indonesian news.” E-Proceeding of Engineering, Universitas Telkom, Vol 8, No 8, Hal 26-35.
Pitria, P. (2014). “Pengguna Twitter Pada Akun Resmi Samsung Indonesia Dengan Menggunakan Naive Bayes.” Jurnal Informatika, Bandung, Hal 53-64.
Bhavsar, H., & Panchal, M. H. (2012). “A Review on Support Vector Machine for Data Classification.” International Journal of Advanced Research in Computer Engineering & Technology, India, 3 (19), 879–886.
Fibrianda, M. F., & Bhawiyuga, A. (2018). Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 3112–3123.